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FOREWORD

This paper presents the results of a study undertaken
to develop methods for ordering and organizing technical,
social, economic and other data that can be presented in array
form. The study leading to the development of this report
was conducted as independent research at the Institute for
Defense Analyses. The theory and development of the

algorithms described in this paper are the work of members of

the Systems Evaluation Division.




ABSTRACT

This research paper presents the results of a study conducted to develop algorithms for
ordering and organizing data that can be presented in a two-dimensional matrix form. The only
restriction imposed on the analysis was that the rows and columns of the raw input data
matrices could only be reordered, thus preventing the creation of artificial coefficients or loss
of essential input information. The purpose of this work was to develop methods to extract
latent data patterns, groupings, and structural relationships which are not, in general, apparent
from the raw matrix data.

Three distinct algorithms were developed and are presented in detail within the report.
They have been applied to a variety of examples from the social and technical sciences which
will also be discussed. The first method developed, the Moment Ordering Algorithm, has
proven to be an effective technique for uncovering and displaying a dominant univariate
relationship between the two sets of entities that lie along the vertical and horizontal axes of a
matrix. The second method, the Moment Compression Algorithm, is designed to factor
decomposible matrice - by proper reordering but was not applied extensively because of its
complex and time-consuming solution. The last method developed, the Bond Energy
Algorithm, was found to be applicable to a broader class of problems than the first two
methods and is able to efficiently organize, group, and interrelate data of considerably more
complex structure.

It will be shown that the techniques developed in this work are applicable to a variety
of problems involving multivariate data analysis and, when used, can often significantly
augment the level of understanding and comprehension of complicated multivariate
relationships.
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PART I: GENERAL DESCRIPTION




. INTRODUCTION

Since the introduction of the large digital computers, methods of multivariate analysis?
are being developed that utilize more effectively the computational resources and character-
istics of the computer than some of the more conventional and established statistical tech-
niques. These new methods are being employed because it is now possible to undertake data
analysis problems in considerably greater detail than was previously feasible. A class of
techniques that is able to account for detailed individual relationships as well as macroscopic
data structure is exemplified by the cluster-seeking? methods. Ball (Ref. 1) has accurately
pointed out that maay classical statistical techniques depend heavily on statistical quantities
estimated from the data and that this “averaging” from the data can sometimes lead to
erroneous conclusions. This is simply because microscopic variations in the data cannot, in
general, be detected from the statistical quantities estimated with the result that small but
significant information can be overwhelmed and even lost under the pressure of larger
statistical trends. Furthermore, many of these classical techniques such as principal component
analysis (Ref. 28) or factor analysis (Ref. 28) implicitly assume data distributions that are not
always present. Thus, it appears that there is a definite need for better direct analysis
techniques so that it is not necessary to completely rely on functions of data or on
assumptions regarding their distribution.

This paper presents three new direct data analysis techniques that were developed at
the Institute for Defense Analyses. One of the algorithms, the Bond Energy Algorithm, shares
a few of the same objectives as some of the other cluster-seeking techniques (Refs. 2 through
20) but has several important differences and advantages. The Moment Ordering Algorithm has
as its principal goal the discovery of a single dominant relationship in the data, while the
Moment Compression Algorithm attempts to factor the data into separable pieces or clusters.
Two important characteristics that all three of these methods share is that they operate
directly on the non-negative raw input matrix data and that they reorganize and reorder the
matrix data by performing row and column permutations in order to reveal obscure and

1. Multivariate Analysis includés such mathematical techniques as Regression Analysis, Factor Analysis, Principal
Component Analysis, Canonical Analysis, Clustes Analysis, etc.
2. Cluster Seeking techniques are those data analysis methods which seek to identify groups of similar entities.

3




potentially informative data patterns. The output of all these algorithms, then, is a new data
matrix with its resulting new ordering.

In Chapter II, the most important features and characteristics of each of the three
algorithms will be briefly described. Then, in Chapter III, the major results and conclusions of
this study will be presented. Part II of this paper contains a detailed description of the theory
and development of the three algorithms along with a number of pertinent examples which
illustrate the favorable characteristics and general applicability of these methods.
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Il. DESCRIPTION AND OBJECTIVES OF THE THREE ALGORITHMS

In this chapter the three data ordering algorithms are briefly described and their
objectives are compared. More detailed description of the theory and development of these
algorithms, along with a number of applications, will be found in Part II.

A. THE BOND ENERGY ALGORITHM!

The Bond Energy Algorithm? is capable of identifying and displaying natural groups
and clusters that occur in complex data matrices. Moreover, the algorithm is able to uncover
and display the associations and interrelationships of these groups with one another. These
tasks are accomplished through the use of a numerical measure of how clustered or clumpy® a
matrix is. The proposed measure of effectiveness (ME) attains its maximum value when the
matrix assumes a very clumpy or aggregated form. It has been found that the structures and
relationships existing in data matrices more clearly exhibit themselves when the matrices are
presented in more aggregated forms corresponding to larger MEs.

The ME is defined as follows. Assume that the matrix of relationships (or transactions,
flow, etc.) has dimension M by N with non-negative elements ajs- The quantity a;j is defined

as?

1
@ =5 [ai+1,j+ai- 1,'+ai,j+1+ai,j-l]'

From Fig. 1 it can be seen that @ is just one half the sum of the horizontal and vertical
nearest neighbors of e The unnormalized ME can now be defined as

ME = Z ajj @jj -
all i,j'
The ME clearly is equal to the sum of all the vertical and horizontal bond strengths in the

matrix where the strength of a bond between two horizontally or vertically adjacent elemerits

1. The theory and development of this algorithm are due to Dr. W.T. McC-:tmick, Jr.

2. This algorithm is so called because its measure of effectiveness involves products of nearest neighbor matrix
elements that may be likened to bond strengths.

3. A clumpy matrix is one whose large elements lie near other large elements, forming aggregates called clumps.

4, With the convention 39530 =3 N+1 T OM# 1, =0.

5
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FIGURE 1. Representation of Bond Energy ME

is defined as the product of the elements. A slightly more general form of this ME is presented
in the more detailed description in Part II of this paper.

To obtain maximum “clumpiness” of the matrix it is necessary to maximize the ME
over all row permutations and column permutations of the matrix, i.e.,

max ‘

‘' all row perm { ME = Z T }
& col perm call i

This problem can be formulated equivalently as two quadratic assignment problems® and its

optimal solution can be determined. However, this rigorous solution is quite time consuming

so a suboptimal algorithm has been developed. The suboptimal algorithm is a sequential

selection procedure that has proven to be efficient and rapid. The description and details of
this technique are contained in Chapter I of Part II

A simple example will illustrate the sensitivity of the ME and the utility of a
rearrangement of the matrix data. Suppose we have a symmetric matrix showing certain
associations or relationships between entities A, B, C and D. The initial relationship matrix is
shown in Fig. 2a, where the ones in the i,jth elements of the matrix represent the existence of
relationships between entities i and j and the zeros indicate the absence of relationships. It is
clear from the definition of the ME and the observation that there are no bonds, that the ME =
0 for the matrix in Fig. 2a. Figures 2b, 2c, 2d, and 2e show progressively greater levels of
clumpiness and their MEs are 2, 4, 6, and 8, respectively. Application of the Bond Energy
Algorithm produces the ordering shown i Fig. 2e, where it is clear that two clusters have been

5. See Appendix A.
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Blo 1 o0 1 Blo 1 0 1
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FIGURE 2a. ME=0 FIGURE 2b. ME=2
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FIGURE 2e. ME=8
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FIGURE 2. lllustraticn of the Sensitivity of the Bond Energy ME

uncovered and in fact the entities have been factored into two unrelated and distinct groups
(i.e., A, C and B, D).

This simple example gives an indication of how the Bond Energy Algorithm can
produce clearer and deeper understanding of the matrix data by simple rearrangement.
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B. THE MOMENT ORDERING ALGORITHM®

The purpose of the Moment Ordering Algorithm is to identify the single dominant
relationship in an array of data, and to reorder the rows and columns of the array to produce a
ranking under this dominant relationship. That is to sav, the algorithm finds the principal axis’
for the data, and arranges both the rows and the columns according to the implicit underlying
variable corresponding to the axis. The concept may be made clearer by considering tke two
examples discussed in Part II. One example involves the distribution of pottery iypes in a
group of archeological sites. The underlying variable is the age of the site, and the aigorithm
therefore produces a chronological ordering of the sites. The second example involves the
voting patterns of a group of Senators. The algorithm determines that the underlying variable
is the degree of liberalism/conservatism, and therefore orders the Senators (and the bilis voted
upon by them) along a liberal/conservative spectrum.

The underlying idea behind the algorithm is the fact that if two rows are very similar to
each other their mean row moments should be close to each other in value. The mean row
moment X; of the ith row is defined as

N
Xi= Z

N
DI D DT
J

1 j=1

where ay; is the ijth

mean column moments, defined analogously, should be close in value. The algorithm, then, is
an attempt to use these moments to rearrange the array so that rows (or columns) are as near

as possible to other similar rows {or columns).

element in the array. Similarly, if two columns are closely related, their

The algorithm begins by computing the row moments for the array in its initial state,
and placing the rows in ascending order of their moments. The column moments are then
calculated, and the columns reordered according to thzir moments. This reordering, however,
changes the values of the row moments. The row moments 2re therefcre recalculated and the
rows reordered. The procedure is continued, alternating between row and column reorderings,
until an ordering is reached in which both the rows and columns are arranged in order of their
moments. Such a stable state is considered a solution. The principal output of the algorithm is
then the one-dimensional ordering of the entities on the array axes on the basis of whatever
dominant relationship may exist in the data.

6. The initial idea for this algorithm and for this research paper is due to Dr. John J. Martin. The algorithm was
improved and developed by Di. Stephen B. Deutsch.

7. A principal axis may be thought of as an “underlying variable” by means of which the explicit variables can be
listed in a one-dimensional ordering. '

8




As an example of how the Moment Ordering Algorithm operates on a sample data
array, consider the relationship matrices given in Fig. 3. When the algorithm is applied to the
data array of Fig. 3a, the new array shown in Fig. 3b is obtained. Simiilar rows are now
adjacent to each other, and the overall ordering of the rows reflects their placement along the
principal axis of the array. Note the concentration of the non-zero elements along the main
diagonal of the new array. This concentration is a property of solutions found by the
algorithm. The details of this method and some examples which have been successfully
handled are presented in Part II.

A B C D E D B A E C
Al1 1 0 0 1 pDl1 1 0 0 O
Bl1 1 0 1 O B|l1 1 1 0 O
c{o o 1 0 1 Alo 1 1 1 0
p{o 1 0 1 O E|O0O O 1 1 1
E|]1T O 1 0 1 c|io0 o o 1 1
FIGURE 3a. FIGURE 3b.

11-12-69-5

FIGURE 3. An Example of the Moment Ordering Algorithm

C. THE MOMENT COMPRESSION ALGORITHM®

The Moment Compression Algorithm is designed to identify natural groups and clusters
of entities by factoring the data relationship matrix into a number of pieces. The algorithm
accomplishes this by finding the data ordering which minimizes a specific ME. The ME used by
the Moment Compression Algorithm is just the sum of all the row and column second
moments about their respective means, that is

where r; and c; are the ith row moment and jth column moment. The minimization of this ME
over all row and column permutations has the effect of compressing the data in such a way as
to force the non-zero matrix elements toward a block-factored form.

8. The theory and development of this algorithm are due to Dr. Paul J. Schweitzer.
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This ME was devised because of the observation that the rows and columns of a matrix
in perfect block-factored form, when contrasted with the same matrix after row or column
permutations, have the smallest sum of the moments of inertia about their means. That is, any
row or column permutation of a matrix in perfect block form will “expand” a block and make
it iess dense, thereby increasing the matrix’s total moment of inertia. A matrix in perfect
block-factored form is shown in Fig. 4.

Y
H

7
11-12-69-6

FIGURE 4. Matrix with Perfect Block Forrﬁ

The problem of ME maximization can be posed as two quadratic assignment problems;
however, in practice, it has been solved sub-optimally by an iterative gradient procedure
involving linear assignment problems.

When the Moment Compression Algorithm is applied to any of the matrix orderings of
Fig. 2 the resulting ordering is the completely block-factored form shown in Fig. 2e. In this
special case when the matrix is completely block factorable, the Bond Energy and the Moment
Compression Algorithms will both produce block-factored form.

D. CONTRASTS AMONG THE THREE ALGORITHMS

In order to understand better exactly how the three algorithms differ, it is useful to
compare their objectives and their computational methods.

The single objective of the Moment Compression Algorithm is to identify groups or
clusters by rearrangement of the matrix data. In addition to sharing this objective the Bond
Energy Algorithm has the additional objective of determining whether and in what manner
these groups are related to one another.? Computationally, the MEs of the two algorithms

9, See discussion before Fig. 6.
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differ substantiaily in that the Bond Energy ME depends on nearest-neighbor interactions
while the Moment Compression ME is completely global. A consequence of this difference is
that the Bond Energy ME more adequately describes the topological properties of clumpiness,
denseness and connectedness. Another consequence is the greater computational ease in
optimizing the Bond Energy ME by use of a rapid sequential selection algorithm which
exploits its nearest neighbor dependency.

The Moment Ordering Algorithm differs markedly from both of the previous data
ordering methods. Instead of attempting to identify groups, clusters or group interrelation-
ships, the main objective of the Moment Ordering Algorithm is to produce a one-dimensional
ordering of entities along the axes of the matrix. It accomplished this by finding a dominant
variable or principal axis along which these entities can be ordered. Computationally, like the
Moment Compression Algorithm, the Moment Ordering Algorithm employs moments which
are global matrix measures, and thus it is not as sensitive to local details as the Bond Energy
Algorithm. Its principal computational difference, though, from the Bond Energy and the
Moment Compression Algorithms is that it is a completely heuristic iterative technique that
does not attempt to optimize any measure of effectiveness.




I1l. CONCLUSIONS

The following statements are the general assessments and conclusions regarding the
applicability, overall usefulness, and efficiency of the three algorithms developed for direct
analysis of multivariate systems by matrix reordering.

e The Bond Energy Algorithm proved to be the most generally useful and
versatile of the three algorithms for treating certain problems of multivariate
analysis. It is capable not only of classifying and clustering data but also of
successfully identifying areas of interrelationships that exist among these
clusters. It has been found to be an efficient and general approach to problems
involving clusters and group structures.

® The Moment Ordering Algorithm is an efficient technique for uncovering and
displaying a univariate relationship inherent in the data. That is, it is a fast and
direct method for uncovering the principal axis of a data structure. The
efficiency of the algorithm was found to be in direct proportion to its ultimate
success in identifying a principal axis. The primary utility of this algorithm is in
determining a good one-dimensional ordering of the data rather than in
uncovering clusters or group interrelationships in the data.

® The Moment Compression Algorithm is successful at identifying clusters and
groups inherent in the data. Both it and the Bond Energy Algorithm will put a
matrix into block form, if this is possible. However, the Moment Compression
Algorithm is slower and therefore less useful for large problems. Unlike the
Bond Energy Algorithm, the Moment Compression Algorithm cannot handle
the case of block-checkerboard! matrices arising from multilateral group
relationships. Consequently the Moment Compression Algorithm is considered
inferior to the Bond Energy Algorithm both with regard to computational
speed and versatility of its measure of effectiveness.

1. See Fig. 6.

13




PART Il: DETAILED DESCRIPTIONS AND APPLICATIONS
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. THE BOND ENERGY ALGORITHM

A. MOTIVATION

The motivation for the development of the Bond Energy Algorithm was to be able to
treat a broader class of problems than that normaily found in cluster analysis applications. In
addition, it was desired to operate directly on and manipulate the original data without
creating or losing information. The object is not only to classify and group similar entities but
also to determine how and by what means these groups are interrelated. This can be illustrated
by considering a symmetric binary (0-1) relationship matrix between N entities. If the N
entities can be separated into, say, four unique groups (unigue meaning that the entities in one
group are related only among themselves and not with any entities outside their own group),
then many of the techniques of cluster analysis are applicable. In this case it is possible to
reorder the rows and columns of the input data matrix to obtain the form given in Fig. S.

m O\ :2:
e
== o000 t
% =
e 4
ENTITY 1 /]
ENTITY 2
7/
. %
o
o
ENTITY N

11-12-69-7

FIGURE 5. Relationship Matrix Showing 4 Unique Groups

However, if the eniities are not completely factorable into unique groups then it is often
desirable to identify not only the principal groups but also their significant areas of relation-
ship. In other words, it might be desirable to rearrange the data matrix to obtain a checker-
board pattern if it is possible. Thic type of pattern is shown in Fig. 6, where the off-diagonai
blocks of large Xs represent data clumps containing a sizable percentage of non-zero entries,
thus indicating partial or total intergroup relationships.

17
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FIGURE 6. Relationship Matrix with Block-Checkerboard Form

The essential question is, given a matrix where the data are presented in an arbitrary manner,
how can the rows and columns of a matrix be simply rearranged to obtain as “clumpy” a
matrix form as possible.

B. THE MEASURE OF EFFECTIVENESS
1. Definition and Interpretations

In order to analytically determine the “clumpiness” of a particular matrix, it was
necessary to develop some measure of effectiveness (ME) ! of how any subsequently proposed
algorithm would progress. This ME must be sensitive to and depend on local clumpiness while
also characterizing the clumpiness of the entire matrix. The essential idea behind the ME,
which fulfills this requirement, came from likening the situation to that of the saturation of
bonds in the nucleus of an atom. That is, when the nucleons are clumped together there is
total bond saturation in the interior of the nucleus while the bonds of the nucleons near the
surface are unsaturated. The intent was to find an ME which when maximized, resulted in as
few unattached or unbonded matrix elements as possible. The bond strength between two
adjacent matrix elements is defined as the 1 /kth power of the product of the matrix elements.
Maximization of the ME will maximize the sum of all the bond strengths, and therefore clump
together the larger non-zero matrix elements. Another physical phenomenon that may be
likened to this situation is that of water beads on a glass, The beads tend to aggregate into

1. A more complete discussion of MEs may be found in Appendix G.

1
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larger clumps in order to minimize the surface energy. Ttie ME can be defined, then, as just the
sum of all the bond strengths in a matrix. Thus

ME = L al/¥

a..
arij 3 kU

where?

k%= 2 12541 T A5 T T 4y

1 [I/k s Gk L 1K l/k]

and k is a weighting constant, which is usually set equal to 2. The ME may be interpreted
mathematically as the sum of the scalar products (or projections on one another) of all the
contiguous row vectors® plus the sum of the scalar products of all of the contiguous column
vectors.?

2. Normalization of the ME

The ME defined above can be normalized so that its value varies between 0 and 1. This
normalized measure of effectiveness (NME) is defined as

1 1/k

NME, = g L/

kT§ & % k%
all 1,j

and 0<NMEk<l

where
S is the normalization constant defined as

S =2 Z ai??/k.
allij ¥

S can be interpreted mathematically as the sum of the squares of the L, norms? of all the row
and column vectors. The advantage in having a normalized ME is that it is easier to determine
how much improvement in the clumpiness of a matrix has been achieved since it is a measure

2. Again, ag; = 3;g = aypg g = iy =0 \

3. The ith row vector is comprised of the elements a}l/k . ailz/k y o ,ag,k in the im row of the matrix. A column vector
is defined analogously. |

4. The L2 vector norm is defined as . -

2
”V"2 = Z:l A
n =
where M is the dimension of the vector space. The fact that the NMEk is properly normalized follows from a basic inequality

> |
for a normed space |a>|2 + D22 (2,%). 19




of the amount of bond saturation. For instance, if the NME of the reordered data matrix
equals 0.6, whereas the NME of the initial data matrix equals 0.2, then it can be concluded
that there does exist a good deal of inherent group structure and interrelationship that was not
initially evident. Moreover, the final NME gives an absolute measure of the existence of the

clusters that we have sought to uncover.

3. Advantages of the ME

The ME proposed above has some very important theoretical and computational
advantages which will be enumerated here.

® The NME can be used for matrices of any size or shape. In addition, symmetry
of the matrix is not required. The only restriction is that the matrix elements

be non-negative, real numbers.

® Since the vertical (horizontal} bonds are unaffected by interchange of the
columns (rows), the ME decomposes into two parts; one (sum of the vertical
bonds) dependent only on row permutations, and the other (sum of the
horizontal bonds) dependent ornly on column permutations. Consequently
optimization of the ME can be achieved in exactly two passes, one finding the
optimal column permutation, the other finding the optimal row permutation.

® These two passes can be carried out completely independently of each other.
In particular, it is not necessary to alternate between row and column permu-
tations, as in the Moment Ordering Algorithm, thus eliminating the possibility

of any cycling® of the solution.

e Since the contribution to the ME from any column (or row) is only affected by
the two adjacent columns (or rows), the optimization lends itself very well to a

multistage sequential selection process.

eThe Bond Energy ME optimization does not require any prior prejudices, such
as forcing the datz into clumps along the diagonal or forcing the data into
block-diagonal form. The representation of the data that is sought is a tight
clumped form and so the maximization of the ME might very weli allow the
possibility of far outlying elements in order to achieve globally higher degree of
compactness. This feature is particularly important in the case of multilateral
relations between groups of entities where it is clearly not possible to obtain a

block-diagonal form.

5. This phenomenon occurs when the solution gets alternately better then worse.
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eThe 1/k power® of ay appearing in the expression for the ME allows any desired
weighting of the larger matrix elements.

C. THE SOLUTION: MAXIMIZATION OF THE ME
1. The Exact Solution

The problem to be solved as implied earlier is to maximize the ME over all row and
column permutations. That is,

f Max {_{_ Y alk J1/K + gl
e 2 i r@,00) |10, 0G6+D 7@, e6G-1)

+'al/k + al/lk
mi+1), 60 7(i-1),60)

where 7= {7 (1), 7 (2),...,7(M} and ¢ = {¢(1),¢(2),..., (N}

are the row and column permutations. This can be thought of physically as maximizing the
sum of all the bond energies and mathematically as maximizing the sum of all the scalar
products of contiguous row vectors and column vectors. This maximization problem can be
stated equivalently as two quadratic assignment problems (the reader is referred to Appendix
A for the detailed formalism). The first secks a permutation of the columns of [aij] which
) maximizes the row bond energy, the other seeks a permutation of the rows of [aij] which

maximizes the column bond energy. These optimizations may be viewed as two clustering
| procedures, one which reorders the rows on the basis of their similarity (similarity being
' measured by the scalar product of the two rows), the other reordering the columns. Reas-
sembling the matrix after both clusterings produces the dense blocks shown in Fig. 6.

F( Although quadratic assignment problems can be solved exactly as weli as approximately (for

]
u exact and approximate methods see the references listed in Appendix A), the solution of this 1_
i
problem requires a large amount of computer time in either case. Our own approximate

ES sequential selection algorithm has been developed which takes advantage of the nearest
E neighbor properties of the measure of effectiveness.
]

2. Approximate Solution

a. Description of the Sequential Selection Algorithm. The suboptimal algorithm which
has been actually used to determine local optima of the ME is as follows:

6. The sensitivity of the ME to the value of k is discussed in Appendix G.
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(2)
(3)

@

(5)

(6)

Compute and store the scalar products of each row with every other
row and each column with every other column.

Select any column to begin the selection process. Set i=1.

Next, try each of the remaining N-1 columns placed alongside the first
column and compare its contribution? to the horizontal bond ME.
Place alongside the first column that particular column which gives the
largest contribution to the ME.

Continue the process at the ith step by comparing the contribution to
the ME by placing each of the N-i remaining columns in each of the i+l
possible positions,® and putting the one which gives the largest con-
tribution to the ME in its proper place.

After the process is completed by placing the last remaining column in
its “best” place, then the entire procedure (items 2 through 5) is
repeated on the rows. It is, however, not necessary to repeat the
procedure on the rows if the initial input matrix is symmetric since the
final resulting row order will be identical with the column ordering,
yielding a symmetric matrix.

b. Advantages of the Algorithm. The algorithm described above has several attractive
advantages which are noted here.

(3)

4)

(5)

(6)

(7N

Since the algorithm is finite and non-iterative, there are no convergence
problems.

The algorithm wiil always reduce a matrix to pure block form if it is
possibie to obtain this form by row and column permutations (see
Appendix B for proof).

The solution obtained from the algorithm is independent of the input
order of the rows (or columns) but is only dependent on the initial row
(or column) chosen to start the sequential selection process.

The results of the algorithm are very insensitive to the starting point
(i.e., starting row or column), hence any solution is a “good’” one (see
Table 2).

The computation time for the algorithm depends only on the size of
the matrix and not on its elements.

The algorithm uses no thresholds or filtering during its operation which
can alter its course and affect the final result.

Only the raw input data matrix is used to determine the new row and
column orderings.

7. Thecc

8. Thei

n is just the dot product of the chosen column vector with the first column vector.
itiums are to the left and right of the i columns already placed.
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3. An Example

A simple example taken from Principles of Numerical Taxonomy (Ref. 15) will
illustrate how the algorithm can identify the clusters and their interrelationships. The
similarity matrix of Fig. 7 is given where a numerical value of 5 in element i,j indicates a high
degree of similarity between entity i and entity j, and 0 indicates o similarity.

A B CDEF GH I J
A 4 1 0 4 1 1 0 3 1
B|l4 5 0 1 3 1 1 0 4 1
cl/1 o 5 0 1 3 3 0 1 2
plo 1 o 5 0 0 0 4 0 |1
E|l4 3 1 0 5 1 0 0 4 1
F|l1 1 3 0 1 5 3 0 1 3
l1 1 3 0 0 3 5 0 1 2
Hio o 0 4 ¢ 0 0 5 1 O
1 |3 4 1 0 4 1 1 1 5 1
J 1211 3 2 0 1 5

11-12-69-9
FIGURE 7. Initial Non-Binary Similarity Matrix
By applying the algorithm described above, a new axis ordering and a new matrix are obtained
and are shown in Fig. 8.

H DB A E I J F GC
H|ls5 4/0 o o 1 0 0 0 O
pl4 51 0 0 0 1 0 0O
Blo 1[5 4 3 41 1 1 0
Alo oj{4 5 4 31 1 1 1
E|lo 0|3 4 5 41 1 0 1
I {1 o|l4 3 4 51 1 1 1
Jlo 17 v 1 1|5 3 2 2
Flo o 1 1 1 13 5 3 3
cglo o 1 1 0 1]2 3 5 3
clo o o 1 1 112 3 3 5

FIGURE 8. Reordered Non-Binary Similarity Matrix

It is easy to identify three major diagonal blocks of large numbers representing three clusters
or groups of entities. Hand D constitute the first group, B, A, E and I the second group, and J,
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F, G and C the third group. From the grouping of the smaller off-diagonal elements it is
evident that there is some weak relationship between the second and third groups but
essentially no relationship between the first group and either of the other two. It is also quite
apparent from this example that this new form for the matrix data conveys more information
concerning the group structure and relationships than does the original matrix form.

D. OPERATION OF THE ALGORITHM
1. Computing Time Requirements

If the original data matrix is of dimension M by N, then the total number of arithmetic
operations necessary to perform all the initial row and column dot products is just:

M-1 N-1
Operations = N Z i + M 2 i or,
i= j=1
Operations = N Mz'_u +M - I‘.]!.Nz'_ll or

for large M and N,

~ M2N +N2M
m— ;2 .

At step i of the algorithm, it is necessary to compare the contribution of the ME of all the
remaining N-i unplaced columns in the i+1 possible positions, thus the total number of column
comparisons equals

Operations

N-1 N-1
Y G+DN-0) = 2 iN-i% + N-i
i=1 i=1

3

~ —6— for large N.

Similarly it requires approximately M3 /6 comparisons for the rows. Thus for a square matrix;
the computation time of the algorithm goes as N3. This theoretical variation in the computing
time has been borne out experimentally as can be seen in Table 1. The computing time® in
seconds is given for various size problems (times given are for a single starting point).

9, On CDC 1604 computer using University of Minnesota compiler.
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Table 1. BOND ENERGY ALGORITHM COMPUTATION TIME

N M Time
21 21 11 sec
29 29 23 sec
48 48 124 sec

From this data a scaling law can be derived which gives the required computation time
in seconds for a given size square matrix, for a singl= starting point.

| Computation Time (sec) = 0.0012 N3
] 2. Ties

' It occasionally happens that ties occur during the course of the sequential selection
‘1 algorithm. Ties between rows and columns can occur in the following ways:

I (D Tie arising from putting the same as yet unplaced column (or row) in
two or more possible positions.
2) Tie arising from putting different as yet unplaced columns (or rows) in

3 the same positions.
(3) Ties arising from putting different as yet unplaced columns (or rows) in
‘ different possible positions.

~ We have no present criterion for deciding how to break ties arising from condition (1), nor is it

" known whether there is reason to select one alternative over the others. Ties arising from
conditions (2) and (3) are broken by selecting the unplaced row or column which has the
shortest length in the Ly norm.'® Thinking in terms of the ME mathematically, if we can
obtain the same scalar products or projections with two vectors, then the shorter should be
used rather than the larger one. This tie-breaking mechanism has been found to work
satisfactorily in that it leads to informative final data arrangements.

3. Effect of Starting Point

Although the results of the algorithm do not depend on the order in which the rows
! and columns are considered, there is a difference in the final results depending on which row
or column is selected to start the multistage decision process. In the example presented in Figs.
7 and 8, the problem was started 10 times, beginning once with each column. Table 2 gives the

i frequency of occurrence and final ME for each distinct solution.

10. This is just the square root of the sum of the squares of all the elements of the vector.
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Table 2. FREQUENCY DISTRIBUTION OF ME

Solution No. Frequency ME
1 3 419
2 3 419
3 1 414
4 2 414
5 1 412

Several significant facts may be noted from these results. First of all, the solutions with the
highest ME, 419, which are believed to be the globally optimum solutions, occur 60 percent of
the time. The difference between the best and worst solution is only 7 out of over 400, or less
than 2 percent. A noteworthy point here is that the final “solution” (ME) depends very
weakly on the starting point and even the worst * zolution” is no very far from the optimal
solution. With regard to the final group structure, it has been found that the various near
optimal solutions do not differ significantly from the optimal solution. The various solutions
are due to the rearrangement of the entities within a cluster group and the reordering of the

groups themselves. These results have been confirmed by experimentation on significantly
larger matrices.

4. Formatting Data

The input format for the data can be in any matrix form. This means tkat the Bond
Energy Algorithm permits analysis of the raw data without forming a similarity matrix.!! For
example, suppose we have an object-attribute matrix and we desire to find out which objects
are similar. The advantage of performing the grouping directiy upon the object-attribute
matrix, rather than upon the similarity matrix, is that it is now possible to determine which
attributes characterize a particular |group of objects (see example 4).

E. APPLICATIONS

Several applications of this method have already been attempted and others have been
suggested. It appears that the algorithm is applicable to a wide class of problems, a number of
which will be enumerated here. |

(1) Identification of natural groups and subgroups within data.

(2) Identification of relationships and dependencies between groups.

3) Relationships of groups of attributes to groups of objects.

4) Examining influence relationships and structures via nonsymmetrical
' data matrices.

11. A similarity matrix is a symmetric matrix whose i,jlth‘ clement is a measure of the similarity of entity i to entity j.
Applying the Bond Energy Algorithm to a similarity matrix identifies (as the diagonal biocks) the main groupings of
entities and (as the off-diagonal clumps) the intetgroup reiationships.
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(5) Analysis of hierarchical clastering and grouping via quantified numeri-
cal relationships.
(6) Factoring of large linear assignment problems (Ref. 32).
( 7N Factoring of large management problems to identify optimal subtasks.
] (8)  Clustering of correlation matrices.
9) Solution of traveling salesman probiems (Ref. 31).
) | (10) Unscrambling flow graphs and network relationships.

- F. EXAMPLES

A number of examples are presented in the following paragraphs to illustrate the
operation and the potential application of the Bond Energy Algorithm. It should be clearly
understood that the algorithm operates on matrices that contain ““hard’’ numerical entries and
therefore considers each data matrix to be an exact representation of the relationships
involved. We feel, nevertheless, that the algorithm has application for problems involving
“soft” data (Airport example) as well as “hard” data (Hindi consonant example), as long as
proper care is taken to judiciously weigh the results subject to the degree of validity of the
2 input information.

1. Example 1

Bonner (Ref. 3) has presented several clustering techniques which uncover group
structure in matrix data. For this example, the Bond Energy Algorithm is applied in several
different ways to illustrate its advantages and directness for gathering similar data into clusters.
The objects which will be clustered are defined by a set of attributes which characterize them.

Bonner presents a binary description of an object set as an object-attribute matrix

'8 which is shown in Fig. 9. ATTRIBUTE NUMBER
. i 2 3 4 5 6
1{1 0 0 1 O O
211 1. 0 1 0 O
y 310 0 1 1 1 1
o OBJECTNUMBER 4 {0 1 1 O 0 1
511 0 0 1 1 O
6,0 0 1T 0 1 O
710 1 0 1 0 1
811 1 1 6 6 0

11-12-69-11

" FIGURE 9. Initial Binary Object=Attribute Matrix
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He then proceeds to form a similarity matrix P, where the Pij are defined as

G

P.. =
1 (:ii + (;jj - (:ij

and Cij is the number of attributes which are “one” for both object i and object j. The
similarity matrix corresponding to Fig. 9 is shown in Fig. 10. A threshold T=0.45 is then used
to convert the fractional similarity matrix of Fig. 10 to a binary similarity matrix by setting
those matrix elements to one whose values are greater than 0.45 and the rest equal to zero.
This similarity matrix is shown in Fig. 11. Bonner then usés this similarity matrix as a starting
point for several clustering techniques.

OBJECT NUMBER

1 2 3 4 5 6 7 8
W1 2/3 1/5 0 2/3 0 1/4 1/4
2! 1 1/6 1/5 2/4 0 2/4 2/4
3! 1 2/5 2/5 2/4 2§5 ] ;a
NUMBER 4 ] 0 1/4 2/4 2/4
OBJECT NUMBER & VA 16 1/5
| é ] 0 1/4
7 1 1/5
8 1
11=12-69-12

FIGURE |0: Initial Fractional Object Similarity Matrix
OBJECT NUMBER

1 2 3 4 5 6 7 8

111 1. 0 0 1 0 0 O

211 1.0 0 1 0 1 1

3/{0 01 0 0 1 0 O

OBJECTNUMBER! 4|0 O O 1 0 0 1 1
511 1.0 0 1 0 0 O

6/0 0 1 0 0 1 0 O

710 1. 0 1 0 0 1 0

8|10 1 0 1 0 0 O 1

11-12-69-13

FIGURE !l, Initial Binary Similarity Matrix

The Bond Energy Algorithm has several advantages over Bonner’s technique. First, it is
able to operate directly on the object-attribute matrix without forming a similarity matrix thus
permitting it to identify those particular attributes that characterize objects in the same
cluster. Second, the application of the algorithm will never rpsult in a loss of information since
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the data are only rearranged. Finally, even using a similarity matrix the algorithm can produce
a reordering which not only displays the clusters but also their strengths and relationships.
These advantages will be demonstrated by successive application of the Bond Energy Algo-
rithm to the matrices of Figs. 9, 10 and 11.

When the object-attribute matrix of Fig. 9 is rearranged by the Bond Energy
Algorithm, the new data matrix of Fig. 12 is obtained. When rectangles are constructed around
solid blocks of 1s in two or more rows and columns, it can be seen that the objects fall into 4
“core” clusters: 3,6 and 2,1,5, and 4,7, and 8. It is also observed that attributes 3 and 5 are the
essential characterizing attributes of the 3,6 object cluster, attributes 4 and 1 are the
characterizing ones for the cluster containing objects 2,1 and 5, and attributes 2 and 6
characterize the cluster containing objects 4 and 7.

ATTRIBUTE NUMBER

4 1 2 6 3 5

g8{0 1 1 0 1 O

410 o1 1|1 O

7|1 ofl1 110 O

OBJECTNUMBER 2 [|T 1|1 0 O O
1|t 110 0 O O

51 _11]0 0 0 1

3|1 0 O 1|1 1

6({0 0 0 O|1 1

11-12-69-14
FIGURE 12, Reordered Binary Object-Attribute Matrix

When the Bond Energy Algorithm is applied to the fractional object similarity matrix
of Fig. 10,a new ordering is obtained. In this new ordering in Fig. 13,

OBJECT NUMBER
6 3 5 1 2 7 4 8

6ff 1 2/4
3ll2/4 1
5 1/ 2/3 244
1 2/3 1 2/3
OBJECT NUMBER ,, 24 2/30 1 (273 373
7 2/41 1 [2/4
4 2/41 1 | 2/4
8 2/4 2/4 1

FIGURE 13. Reordered Fractional Object Similarity Matrix
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only the larger elements (i.e., 1/2 or greater) are shown so that the clusters can be more easily
identified. Again, it is possible to identify the clusters and how they interrelate. Objects 3 and
6 form a very tight independent cluster. Objects 5,1,2 form another tight cluster, although
there is a non-trivial relationship between object 2 and objects 7 and 8. Objects 4 and 7 form
another cluster that is somewhat related to objects 2 and 8. Thus, visually, this form of data

presentation is helpful and its computational requirements are very small (less than one
second).

When the Bond Energy Algorithm is applied to the binary similarity matrix of Fig. 11,
the result is given in Fig. 14. It is quite apparent that these results illustrate the same
relationships and clusters as those shown in Fig. 13, but are inferior since the strengths of the
relationships are not shown. This illustrates that while Bonner’s filtering technique leads to the
uncovering of major clusters, it also loses information present in the original data matrix.

OBJECT NUMBER

3 6 1 5 2 4 8
3//1 1]o o0 0o 0 0 ©
6/[1 1]0 0 0 0 0 0
110 o1 1 1l0 0 0
OBJECTNUMBER | o ol1 1 110 o0 o
210 o1 1[1[1]o/[1
710 0 0 o111 ]o0
4/ 0 0 0 0o O[1[1]1
8/ 0 0 o of[1]o[1 1

11-12-69-17
FIGURE 14. Reordered Binary Similarity Matrix

2. Marketing Techniques and Applications

In displaying the data relationships in this example, it is found that the application of _
the Bond Energy Algorithm reveals several latent group associations and significantly enhances
the quality of the presentation of the data.

Figure 15 contains a matrix showing which Marketing Techniques are used for
particular Marketing Applications.!? By application of the algorithm it is possible to reorder
or relist the marketing applications on the one axis and the marketing techniques on the other

12. The data for this example were taken from the September-October 1969 issuc of the Harvard Business Review
from “Technigues in Marketing Research” by J.F. Dash and C. Berenson.
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ADVER-
TISING
RESEARCH

ACQuUI-
SITION
SCREENING

BRAND
STRATEGY

CUSTOMER
SEGMEN-
TATION

CUSTOMER
SERVICE

DISTRI-
BUTION
PLANNING

MARKET
SEGMEN-
TATION

PRICING
STRATEGY

PRODUCT
LIFE-CYCLE
ANALYSIS

PRODUG
LINE
ANALYS

REGRESSION & CORRELATION X X
ANALYSIS

DISCOUNTED CASH
FLOW (DCF)

INCREMENTAL
ANALYSIS X

MULTIPLE REGRESSION/ X X
CORRELATION

RANDOM
SAMPLING

SAMPLING
THEORY

BAYESIAN
APPROACH X X X

COST-BENEFIT
ANALYSIS X

CRITICAL PATH X
METHOD (CPM)

DECISION
TREES X X X X

DYNAMIC .
PROGRAMMING

EXPONENTIAL
SMOOTHING

INDUSTRIAL X X
DYNAMICS

INPUT-OUTPUT X
ANALYSIS !

LINEAR X X
PROGRAMMING *

MARKOV
PROCESS X X

MONTE CARLO
SIMULATION X X X

NONLINEAR
PROGRAMMING

NUMERICAL ’
TAXONOMY X X X X /

PERT X

QUEUEING
MODELS ' X X

RISK
ANALYSIS X X | X X .}

SENSITIVITY
ANALYSIS

TECHNOLOGICAL X
FORECASTING X

-12-49-25

X X

FIGURE i5.




T oistR- | MARKET PRODUCT | PRODUCT | PRODUCT |  R&D RO SALES TEST | VENTURE
MER| BUTION | SEGMEN- | PRICING |LIFE-CYCLE}  LINE PLAN- | PLAN- | ANAL- | FORE- | MARKET- |  PLAN-
CE[PLANNING | TATION | STRATEGY | ANALYSIS | ANALYSIS | NING NING ySIS | CASTING | ING NING
X X X
- X X X X
X X X
- X
| X X
X X X X
X
X X X X X
X X
X X X
X
X X
X X X X X
X .
- X X X
X
B X
. X X X X X
X X
X X
| X X
_
X X X X X X X

Applications
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CUSTOMER
SEGMEN-
TATION

MARKET
SEGMEN-
TATION

SALES
FORE-
CASTING
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STRATEGY

ADVER-
TISING
RESEARCH

PRICING
STRATEGY

ACQUI-
SITION
SCREENING

PRODUCT
LINE
ANALYSIS

VENTUR
PLAN-
NING

MARKQOV
PROCESSES

X

X

NUMERICAL
TAXOMOMY

X

REGRESSION & CORRELATION
ANALYSIS

MULTIPLE REGRESSION/
CORRELATION

SAMPLING
THEORY

EXPONENTIAL
SMOOTHING

INPUT-OUTPUT
ANALYSIS

TECHNOLOGICAL
FORECASTING

CRITICAL PATH
METHOD (CPM)

PERT

MONTE CARLO
SIMULATION

DISCOUNTED CASH
FLOW (DCF)

DY NAMIC
PROGRAMMING

COST-BENEFIT
ANALYSIS

BAYESIAN
APPROACH

DECISION
TREES
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ANALYSIS

SENSITIVITY
ANALYSIS
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ANALYSIS
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QUEUEING
MODELS

LINEAR
PROGRAMMING

NONLINEAR
PROGRAMMING

RANDOM
SAMPLING
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TEST
MARKET-

ING

CUSTOMER

DISTRI-
BUTION
PLANNING| SERVICE

ROI
ANAL-

YSIS

LIFE-CYCLE

PRODUCT
ANALYSIS

PRODUCT
PLAN-

NING

.

R&D
PLAN-

NING

VENTURE
PLAN-

NING

PRODUCT
LINE

ACQUI-
SITION
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!
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r

e

EIGURE 16. Reordered Matrix of Marketing Techniques

and Applications
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axis, while preserving all the data relationships contained in the original matrix. Fig. 16
contains the reordered matrix produced by the Bond Energy Algorithm. With the data in this
new matrix form, it is now possible to identify three major clusters or clumps of data. It is
believed that in this new form it is possible to uncover useful information that was not obvious
from the original matrix.

First, the algorithm groups marketing analysis techniques that are used for the same
applications and also it groups marketing applications that utilize the same marketing tech-
niques. This has the effect of putting similar marketing techniques near one another on the
vertical axis and putting similar applications together on the horizontal axis. It is postulated
that the clumps provide, for one thing, a basis for efficient assignment of responsibilities to
analysts and their supervisors, and for another, by exception, a basis for deciding upon the
relative merits of “techniques” specialists and “‘applications’ specialists.

Second, if it is possible to factor a matrix completely so that it is apparent that there is
a unique relationship between a certain group of marketing techniques and a certain group of
marketing applications, then the algorithm will accomplish this. In this example, this has been
partially done by identifying three more or less independent clumps in Fig. 16. In particular, as
was noted by the authors, PERT and CPM are similar in concept and hence they occur
together in the same clump. Also, as noted in the article, risk analysis is often wused in
conjunction with the method of decision trees. Here again, these marketing techniques are '
contiguous in the new ordering. On the other axis it is found that similar “marketing
applications” are grouped together. For example, Product planning, R&D planning, Venture
planning and Product-line analysis all involve planning of some sort and occur in the same
clump because they utilize common “marketing techniques’’ for planning, such as PERT, CPM,
etc.

Another possible way in which the clumped matrix of Fig. 16 can be useful is to
suggest possible unexploited application of techniques to marketing applications to which they
have not already been applied. These could be identified by looking for conspicuous ho]!es_
within the clumps or omissions on the borders of the clumps.

Thus, it appears in this example, that with proper arrangement of binary (yes-noj or
quantified data given in matrix representation, that the amount of information conveyed can
be significantly enhanced to such an extent that it is undesirable to present it in other than
clustered form.




3. Coordinating Airport Design’ 3

A practical way to design an airport is to factor the problem into a number of smaller
pieces. If the subproblems can be solved separately and then adjusted so as to remain valid in
the context of the original problem, then the task is completed. It is, however, necessary to
determine the best way to factor the big problem into more manageable pieces.

A numerical example will illustrate the applicability of the Bond Energy Algorithm to
the problem. The objective is to exploit the structure of an airport problem in such a way as to
identify two things:

eThe “natural’ subproblems
e The necessary coordination between subproblems.

The ultimate accomplishment would be to factor the problem into small, completely
independent subproblems. But given that complete independence is impossible, the next best
thing is to minimize the intergroup dependencies by identifying the optimal way to subdivide
the problem.

The first step is to describe the airport problem in terms of of variables and their
interrelations. A partial list of exogenous and control variables is s ho wn in Table 3.

The exogenous variables describe those factors mostly dictated by the environment
while the control variables apply to those factors primarily under control of an airport planner.
Let X; be the jth exogenous variable and let D; he the ith control variable. The X’s may be
thought of as input data and D;’s as the design demsmns Given a set of values for the X’s, it is
assumed that there exists some way of measuring the performance of an airport de31gn based
on some criteria. The details of the performance function are not needed; just a few basic
characteristics. Let P be the measure of performance and let F be the function that measures
performance. Clearly, P is a function of the D;’s, hence |

P=F (Dy. Dy. .., Dy7).

F will, in general, depend on the X;’s; however, the discussion will be limited to a specific set
of values for the X;’s. The design problem involves selecting values for the D;’s that maximize

13. The analysis and the data for this spplication are due to Mr. T.W. White of the Institute for Defense Analyses.
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Table 3. AIRPORT VARIABLES

Exogenous Variables

Total air travel demand

Originating passengers

Transferring passengers

Terminating passengers

Greeters and well-wishers

Access ground transportation mode for passengers
Egress ground transportation mode for passengers
Airport employees '
Taxis and cars that do not park

Cars whose drivers park and fly

Rental cars going to the airport

Rental cars driven from the airport

Bus and limousine .

Employee access transportation mode

Passenger trip duration

Aircraft turn around time on apron

Mix of aircraft by capacity

Gate schedule: aircraft arrivals and departures
Origin/destination pattern for baggage at airport
Air cargo demand

Runway demand

Control Variables

10.
11
12.
13.
14.
15.
16.
17.
18.
19.
20.

21

-l

22,
23.
24,
25.
26.
27.

Nl B RS

Passenger check-in

Baggage check-in

Baggage claim

Baggage moving system
Intra-airport transportation system
Cargo terminal

Close-in parking lots

Remote parking lots

Main access roads to and from airport
Circulation roads within airport
Service arca for rental cars

Parking lots for rental cars

Curb space for unloading

Curb space for loading

Waiting areas at gates

Stations for intra-airport transportation system
Aircraft loading system
Concessions

Rental car desk

Runway capacity

Number of gates

Passenger information

Cargo transfer

Air traffic control system

Refuse removal

Flight operations and crew facilities
Aircraft service on the apron
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P. The problem can be simplified, for example, if the function F “factors” into two parts; that
is, if there are two functions F, and Fy, and if the D;’s can be split into two groups such that

F (Dl,. .o D27) = Fa(A) + Fb(B)

where A and B are groups of D;’s such that no D; is common to both A and B. A and B
represent subproblems that can be solved separately. The general goal is to break the function
into as many ‘““factors’ as possible such that there is no, or very little, interaction between
factors.

The next step is to determine the interaction between all pairs of control variables, D;

and ]Dj, for example. Does the behavior of D; with respect to the performance function F
depend on Dj‘? Let R(i,i) be the answer where R(i,j) may take on one of four values as follows:

no obvious dependency
weak dependency
moderate dependency
strong dependency.

w D -0
i

Based on White’s subjective judgment, values for R(i,j) were generated and appear in Fig. 17. It
is assumed that R(i,j) = R(j,i)' Note that the ordering of the items in the matrix produced very
scattered data. The eye is not able to identify any striking organizational structure.

The Bond Energy Algorithm was applied using the original matrix as a starting point
with the objective of rearranging the rows and columns of the matrix to cbtain a betier order.
The algorithm tends to push the larger numbers together into clumps and favors large clumps
over smaller ones. There is no preferential orientation of the final clumps; however, the
symmetry of the original matrix about its diagonal results in a symmetrical final arrangement.
The improved ordering is shown in Fig. 18. (The algorithm applied to the original matrix
required about 2 minutes of CDC 1604 computer time for a number of starting poinis.)

After studying the matrix in Fig. 18, it appeared that there were eight clumps of
numbers as indicated in the figure. The clumps contain all of the strong dependencies (the 3s)
and all but six of the moderate dependencies (the 2s).

The interpretation of Fig. 18 is that clumps along the diagonal correspond to natural
divisions of the big problem into subtasks. The off-diagonal elements not included in any
clump correspond to coordination links. Figure 19 illustrates this interpretation. The items are
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listed along the left of Fig. 19 in the order found on the “clumped” matrix (Fig. 18). As a first
appreximation (shown below), the performance function can be split into eight factors
corresponding to the eight subproblems shown in Fig. 19.

P ~ F,(Dyg, Dys5, Dy7)
+ Fy, (D37, D23, D6, D17)
+ Fe (D15, D315 Dygs Ds)
t  Fyq(Ds, Dg, Dg, Dyg, D7)
+ Fe (D13’, D’223 DI: D2s D4)
+  Fp(Dy, D3, D1y)
+ Fg (DIZ’ Dll)
*  Fp (D9, Pyg, Dog)

Except for Dy (aircraft service on apron) and D4 (intra-airport transportation system), the
eight components in the above approximation form independent subproblems. The six coordi-
nation links shown in Fig. 19 could form the basis of six ‘‘correction factors” which would
improve the approximation. The correction factors would be of the form A, (D, Dg), Ab
(D19, D13), A (B1g: D14) Agq (D16 Dy3)s Ag (D5, Dy); and Ag (Dpg, Dyy):

4. Ordering of Error Matrices in the Analysis of Perception of Consonants

In this example, the Bond Energy Algorithm is used to reorder an error matrix
obtained from an experiment testing the perception of consonants. The matrix under consider-
ation is a square matrix with the 29 consonants lying on the vertical and horizontal axes. These
data were taken from an article by Ahmed and Agrawal (Ref. 29) in the Journal of the
Acoustical Socicty. In the experiment each consonant was enunciated in the intial position of
540 nonsense syllables. The a,8 element of the matrix contained the number of times
consonant § was heard when consonant a was spoken. It is clear than since the correct
consonants are heard most often, the diagonal elements of the matrix will be largest. For this
example, the square roots !%f the elements were used rather than the elements themselves,
and all the elements whose values are less than two are deleted.?® The error matrix was input
in a random manner and the best ordering of the reordered error matrix is shown in Fig. 20.
The square blocks lying along the principal diagonal of the matrix indicate that the consonants
have been clustered into 7 groups. These clusters represent those groups of consonants that
were most often confused with one another during the experiment. The off-diagonal non-zero

14. In this example the weighting k=2 is again used to preserve scale.
15. The 3mall elements are deleted so that the patterns formed by the larger elements may be visually identified more
caslly.
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entries represent consonants in ore group being mistaken for consonants outside their group.
Note, for example, that one cluster contains the consonants dh, d, .d, and b which occur

together because they sound so much alike and hence were often mistaken for one another
during the experiment.

This example again illustrates how this method of direct analysis can be a significant
aid in determining inherent group structure contained in data matrices.

_de3d3htfhfskhbhghphth.rk.dhdhd.dbwr.ttpgkh imon |
TF|23

hd3| 23
93 223 3

tf 2 23

f 23 5

: 4 23

Lk 23 2 2 3

b, 3 23 2 3

g 222 4 2 3 2

P 2 422 5 3

th 2 3 2

A 2 31120 2 2

d 2 2 321 9 3

d 2 2 3 23{ 2

d 2|23 4 2

.d 523 2 2

b 2 323

w 23 5

r 3 23

¢ 2 22 6

.t 523 2

p 4 23

g 23

k 4 23

h 3 2 23

i 23 ,

m 2 {235

n 4 23

| 3 23]

11-12-69-21

'FIGURE 20. Reordered ( HINDI) Consonant Error Matrix
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5. Inter-City Distances

In this example, the Bond Energy Algorithm is applied to a geographﬁcal nroblem to
determine if it can satisfactorily cluster or clump together neighboring cities when a large
number of inter-city distances are given as input data. Since the algorithm clusters large
elements of a matrix, it was decided that the square root!é of inverse distance would be used
for the matrix elements. In particular, the elements:of the matrix al/kij are given by the

expression, (with k = 2) ,
1/2 _ f100 .
all2= [ i i# j,and
Y

1/2

1]

20 alli=j

where dij is the distance between city i and city j in hundreds of miles and the resulting matrix
elements are rounded to the nearest integer. This input matrix is given in Fig. 21, where, for
visual clarity, all the elements with values less than 7 have been deleted. It should be

remembered from the definition that the larger the matrix element, the closer are the two
cities i and j.

The matrix given in Fig. 22 is the reordered inverse distance matrix following operation
by the algorithm on the input matrix. Elements whose values are less than 7 have again been
deleted.

A number of clusters may easily be determined by identifying the square blocks of
data that occur along the main diagonal of Fig. 22. The first two cities, Helena, Montana, and
Bismark, North Dakota, are well isolated and constitute two separate clusters themselves. The
next two cities, Denver, Colorado, and Cheyenne, Wyoming, are quite close and constitute a
cluster. The next three cities, Des Moines, Iowa; Dubuque, Iowz; and Chicago, Illinois, are
contained in the next cluster, and so forth. The one anomaly that does exist is the occurrence
of the rectangular off-diagonal block of 7s. This indicates that although Chicago, Detroit, and
Ft. Wayne are geographically near each other and are therefore in the same cluster, that
Detroit and Ft. Wayne are also near some cities in another cluster, i.e., Cleveland, Akron,
Columbus, and Cincinnati.

All these clusters may be verified geographically by referring to the map of the United
States given in Fig. 23. The cities under consideration are denoted by darkened squares and the
clusters are shown by the cities contained within each closed line.

16. The square root was used to preserve scale and keep the matrix elements less than or equal to 20.
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FIGURE 2I. Initia! Inter=City Inverse Distance Matrix
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The couciusion that can be drawn from this example is that the Bond Energy

. Algorithm can indeed rearrange data geographically when it is prescnted in another order
| (alphabetically).
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Il. THE MOMENT ORDERING ALGORITHM

A. INTRODUCTION

The purpose of the Moment Ordering Algorithm is to use the information contained in

an array of data to find a one-dimensional ordering of the rows (and columns) of the array.

This one-dimensional ordering will represent the ranking of the rows (and columns) under the

relationship which the algorithm finds to be the most important in analyzing the array. The

P algorithm therefore provides a method of extracting, from the complex interrelationships

which may be expressed in the array, a single important relationship, and of organizing the

rows and columns according to this relationship. For example, one of the problems discussed

below involves an array describing the voting pattern of Senators. The algorithm in this case

takes the array, originally in the arbitrary form of an alphabetical listing of Senators and a

chronological listing of votes, and produces an ordering of the Senators, and of the bills voted

upon, based solely upon the original array, which represents a liberal/conservative ordering. A

second example involves an array consisting of archeological sites as the columns, and of

pottery types as the rows, with the entries being the concentration of a pottery type in a site.

The algorithm in this case privides a reordering which puts the pottery types, and tiie sites, in a

choronological order, based upon the fact that the most important factor in determining the
types of pottery found at these sites was the age of the site.

B. THE ALGORITHM
1. Motivation

The definition of the algorithm is based upon the fact that if two rows are similar to
i each other, their mean row moments should be close to each other in value. The mean row
moment X; of row i is defined as

} X i

ji=1




where ay is the ijth entry in the array. This is merely another way of stating that rows are
similar if their large entries occur in the same columns, or in columns close to each other.
Similarly, if two columns are closely related, their mean column moments, defined as

should be close to each other in value.

Based upon these observations, then, it is desirable to arrange an array so that its rows
are in order of the values of their row moments, while at the same time its columns are in
order of the values of the column moments. This state will correspond to a one-dimensional
ranking of both the rows and the columns according to the same underlying variable. The
algorithm provides a method of finding such states, and hence of ordering arrays of data.

2. Definition

The algorithm, beginning with an arbitrary arrangement of an array, proceeds in the
following way to find a state with the property described above, of having both the rows and
the columns of the array arranged in order of their moments:

1. The row moments are calculated for the original arrangement of the array, and
the rows are reordered to put them in order of their moments.

2. The column moments are calculated, and the columns reordered according to
their moments.

3. Because the reordering of the columns changes the values of the row moments,
the rows will no longer necessarily be in order of their row moments. The row
moments are therefore recalculated for the new arrangement of the columns,
and the rows reordered according to these new moments.

4, The procedure is continued, alternately reordering the rows and columns, until
a state is found in which both are simultaneously in order of their moments.
This state, then, is the desired ordering of the rows and columns, and is a
solution of the algorithm.
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The algorithm is therefore entirely an iterative procedure. The progress of the algo-
rithm toward convergence, however, is marked by an increasing concentration of the larger
elements on or near the main diagonal.?

The progress of the algorithm is illustrated, for a 4x4 array, in Fig. 24. The initial state
of the array is a; the values of the row moments for that array arrangement are also shown.
The algorithm then proceeds through states b, c, and d, by reordering the rows and columns
alternately. When state e is reached, it is found that the rows are already in the proper order
and do not need to be reordered. This marks that state as a solution.

The concentration of the larger elements on or near the main diagonal in the solution is
pointed out in Fig. 24 by circling, in the initial and final states, the four largest elements. They
are scattered in the initial state but in the solution three are on the main diagonal and one is
just off it.

The following subsections present further details concerning the use.of the algorithm.
Section C presents several specific problems which have been investigated by use of the
algorithm, and illustrates the utility of the orderings produced by the algorithm.

3. Stable States and Multiple Solutions

The algorithm as defined above takes an arbitrary initial ordering of an array and finds
a stable reordering. It has been found, however, that if different initial orderings of the same
array are used, different solutions may be found. For exampie, Fig. 25 shows two different
solutions which can be found for a simple 3x3 array.?

When the algorithm is run many times on larger arrays, using different starting
orderings each time, it has been found that those solutions which occur most frequently
always are amongst the most diagonal arrangements of the array.? Conversely, any solutions
which are very nondiagonal occur only rarely.

This observation has been used as the basis of a technique for obtaining a final ordering
of the rows and columns which best utilizes the additional information found in the multiple
solutions.

p—

1. Appendix H discusses a measure of effectiveness which has been defined to measure this progress toward
diagonality. However, because unlike the Bond Energy Algorithm this algorithm was not developed tomaximize this quantity,

the measure of effectiveness defined has been found to be of only marginal use. . . .
2. Appendix I describes an investigation which was made, for a 3x3 array, of the properties which lead to the existence

of these multiple solutions. ) )
3. As measured by the correlation coefficient measure of effectiveness defined in Appendix H.
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(INITIAL STATE)

ROW
a B 7Y 6 MOMENTS
A Ca) 3 4 5 2,73
B 8) 4 5 2 2.05
@ ¢ | 7 ; 3 2.86
D | @DE® 2 5 2.25
I
REORDER ROWS
\ |
o Y 6
B 8 4 5 2
D 7 6 2 5
b A | 3 3 4 s
C 2 1 8 3
NEW COLUMN | 1.95 2.07 2.79 2.60
MOMENTS |
REORDER*COLUMNS
NEW ROW
. o B & Y MOMENTS
B 8 4 2 5 2.21
D 7 6 5 2 2.10
(c) A 3.3 5 4 2.67
C 2 1 3 8 3.21
REORDER ROWS
]
Io% B 6 Y
D 7 6 5 2
B 8 4 2 5
(d) A 3 3 5 4
C 2 1 3 8
NEW COLUMN/| 2.00 1.93 2.40 2.95
MOMENTS |
REORDER COLUMNS
\ NEW ROW
B « & Y MOMENTS
D | ®©@ 5 2 2.5
(e) B 4 (8) 2 5 2.42
A 3 3 5 4 2,67
C 1 2 3 3.29

NO REGRDERING OF
ROWS NECESSARY
(SOLUTION)

11-13-6941

FIGURE 24. Operation of the Algorithm on a Small Array
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FIGURE 25. lllustration of Multiple Solutions

The algorithm is run a “large” (25 or 50 has been found satisfactory) number of times,
each time starting from a different random ordering of the rows or columns, and the order of
the rows and columns found each time is saved.? The average of the position taken by each
row (and column) in the solutions is found. (Solutions found more than once are entered once
for each time found in obtaining the average.) The rows’ and columns’ final order is then
simply the order of their average positions. Most often, this order will be the same as the order
in the most common solution; it is always very close tc that order.

Despite the additional complication introduced, this technique is considered preferable
to merely taking the most common solution, because in the event that several solutions are
common, this technique best takes into account the alternative orderings each solution
represents in arriving at a consensus final ordering.

4. Additicnal Details

The previous sections have discussed all of the features of the algorithm which are
important in practice. There are, however, two points of theoretical interest which must be
mentioned at this point. Both concern situations which can arise in the process of iteration
carried out by the algorithm. Both occur so rarely, however, that in practice they can usually
be ignored.

a. Ties. In carrying out the algorithm, two or more rows or columns may have
identical moments. In this case it is necessary to resolve the tie to obtain an ordering so that
the algorithm can proceed. This is done by trying all permutations of non-identical rows (or
columns) and selecting that particular row (or column) order which yields the highest value of

4. Note that a particular order and its reverse ire considered identical and saved as the same order.
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the cosrelation coefficient R.% If several permutations of the rows (or columns) have the same
value of R, the algorithm simply accepts the last order investigated. It should be noted that
ties, while prominent for small, binary (0-1), arrays, very rarely occur when dealing with large
arrays containing non-binary data.

b. Cycling. According to the definition of the algorithm, the iterative procedure is
continued until a stable state unchanged by either row or column operations (Fig. 24, for
example) is found. In fact, however, it is theoretically possible that, instead of arriving at such
a stable state, the algorithm may cycle between a small set of states. Fig. 26 illustrates the
phenomenon for a specially designed small array (in actual fact such cycling has only been
found in very much larger arrays).® Once the algorithm arrives at the state shown in Fig. 26,
which it can reach from many other states, it will cycle forever Letween a, b, ¢, and d, in that
order. Such an “infinite loop” itself represents a final state of the array. The procedure used
when such cycling is detected therefore is to terminate the iterations and take one of the
states involved in the loop as the solution. '

(a) v« B v & — (b) « B v &

Al 9 1 0 o0 REORDER Al9 1 0 o0

Bl 5 0 0 5 ROWS Ci3.5 2 1 3.5

cl|3.5 2 1 3.5 Bl 5 0 0 5

D/ 0 1 0 9 plo 1 0o 9
REORDER REORDER
COLUMNS ‘COLUMNS

(d) a Y B 5 - (c) a ¥ B b

Al9 0 1 0 REORDER Al9 0 1 o0

B|5 0 0 5 ROWS Cl3.5 1 2 3.5

cl3.5 1 2 3.5 B 0 0 5.0

D{O0 0 1 9 DIO 0 1 9

11-13-69-2

FIGURE 26, Illustration of Cycling Phenomenon

In practice, this phenomenon has been observed only very rarely, and only in very large
arrays. Furtl;ermore, even when it does occur, it has been found that most often the algorithm
will find normal stable solutions wher operating upon the same array from other starting
points. For this reason, this cycling, while theoretically quite objectionable, has been found to
be of little operational difficulty.

5. See Appendix H. .
6. The symmetry and normalization inherent in the array of Fig. 26 are not necessary for the cycling to occur, but
were built in to simplify the array.
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5. Computation Time

For an MxN matrix, M operations are required to compute each column moment and
N operations to compute each row moment. Therefore, for each iteration, the total number of
operations necessary to reorder the rows and columns is 2MN. Finally, if it requires I iterations
for the algorithm to converge, the total number of operations to reach a solution for each
random starting point is 2IMN. The computer time required on the CDC 1604 to solve a
particular 29x29 matrix was about 24 seconds f~r one starting point; an 80x 80 matrix took 4
minutes. Note that these times are influenced by the number of iterations required for
convergence as well as by the matrix sizes.

C. RESULTS

This section describes two problems investigated with the Moment Ordering Aigorithm.
It demonstrates that the algorithm can in fact uncover a dominant relationship from the vast
amount of information in a matrix, and can produce orderings of the rows and columns which
reflect this relationship.

1. U.S. Senate Voting Patterns

The algorithm was used to study the relationships between the voting patterns of a
group of U.S. Senators. The hope was that, given only the recorded positions of Senators on a
random group of issues, the algorithm could generate a meaningful ordering. The first 20
Senators (alphabetically) in 1968 were chosen, and their recorded positions’ on 12 issues were
tabulated (see Tables 4 and 5). The recorded position of the President on each issue was added
to the table, and the algorithm was applied to the resulting 21x12 array. The results, as shown
in Table 6, showed an ordering from conservative Republican and Southern Democrat at one
end to liberal Democrat on the other. To be sure that the strong ordering was not an accident,
the same type of array was constructed for 12 different roll calls (but the same Senators), and
the algorithm was rerun. The cozrelation between the two sets of results (see Table 6 again)
indicates that the ordering found was significant. The difference between the two rankings
does not, it is emphasized, reflect any inherent limitation upon the accuracy of the algorithm,
but rather is 2 result of the limited sizes of the samples of votes used in the analyses. If more
roll calls were added to the arrays, the results would approach each other more and mare,
reflecting the enlarged and therefore improved sampling. The algorithm’s solution inc..cates
that, as might be expected, although a Senator’s position on any given issue may not always be

7. As taken from tables in Congessional Quarterly Almanac, Vol. 24, 1968, pp. 13-58S.
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' Table 5. ARRAYS USED IN SENATE VOTE PATTERN ANALYSIS®

Vote | Rollb
No, |Call Vote ‘ Subject Matter Sponsor
1 10 | 33-58| Amendment to open housing bill to bar federal couris frem impairing title to real | Ervin
property as recorded under sfate recording statutes,
2 20 | 62-21| Amendment to open housing bill to punish anyone instructing in the use of fire- Long
arms for ricts, or interfering with police during a riot.
3 30 | 61-19] Amendment to open housing bill to provide a compromise bill, Dirksen
4 40 | 19-58 § Amendment to gold cover removal bill to limit expansion of Federal Reserve Allott
notes in circulation to 4% per year.
5 50 | 43-28 | Amendment to Standards of Conduct Reselution to allow use of political Yarborough-
contributions for certain office expenses. Javits
6 60 | 38-44 | Amendment to excise tax extension bill to provide 20% surtax on prople Mundt-
trading with Communist nations which upply North Vietnam. Byrd (Va.)
7 70 |53-35| Amendment to excise tax extension bill to impose 10% income tax surcharge Williams-
and limit expenditures to $180 billion. Smathers
8 80 | 28-30] Amendmeat to Military Procurement Authorization to cut R&D funds from Hart
$7.9 tr $7.4 iilion,
9 00 |39-29 | Amendment to Conservation Fund bill to remove cuter continental shelf Williams
vevenues from fund for 1972 and 1973
10 100 | 29-53 | Amendment to Omnibus Crime Bill to prohibit interstate mail order sales f.ennedy

of rifles and shotguns.

11 110 | 51-30 | Amendment to Omnibus Crime Bill to delete language denying Supreme Court Tydings
jurisdiction to review state coun judges’ decisions to admit eyewitness testimony
in evidence.

12 120 |33-44 | Amendment to Omnibus Crime Bill to allocate 2,3 instead of 85% of funds in Brooke
block grants to states,

13 127 | 25-35 | Amendment to require cities a5 well as states to reirnburse NIDC for costs of Russell
riot losses insured by NIDC.

14 137 | 42-27 | Amendment to delete section on retirement penefits from bill to extend term Carlson
of office of bankruptcy referees.

15 150 |44-32 | Motion to table amendment which would have provided $52 million supple- Holland
mental 2ppropriation to Labor Department for summer jobs.

16 160 | 16-61 | Amendments to Military Construction Authorization to cut Navy and Air Clark
Force funds by 10%.

17 170 | 34-38 | Amendment to juvenile delinquency bill to allocate all funds as block grants to Murphy
states.

18 180 134-52 | Amendment to Federal Agency Authorization to cut NASA'R&D funds an Williams
additional $300 million.

19 190 |30-40 | Amendment to Agricultural Act to limit to $75,000 payments to one prcducer Williams
for porticipation in certain agricultural programs.

20 200 |46-45 | Amendment to Interest Rates Bill to strike out language authorizing Federal Bennett
Reserve banks to purchase obligntions directly from federal agencies.

21 211 | 51-22 | Amcndment to strike out language added by House which limited expenditures Committee
of State, Justice, and Commevce to $1.98 tillion.

¢
22 221 | 46 - 28 | Foreign Aid Authorization Bill. —
. 23 230 |723-35 | Amendment to Renegotiation Act to exempt Renegotiation Board from Proxmire
employee limitations.
24 240 131-53 | Amendment to Gun Control Act to add a registration provision, Brooke
3 Information is taken from the Congressional Quarterly Almanac, (Vol. 24, 1968), pp. 15-58S,
b The first 12 roll calls above are included in the first array, the second 12 in the second array.
€ When a roll call selected was too one-sided to convey significant information, a roll call close in time to it was substituted.
* \) ‘

Aruitoxt provided by Eic:




Table 6. RESULTS OF VOTE PATTERN ANALYSIS?

Order Array 1° Array 2°
1 Burdick Burdick
* 2 Clark Bayh
3 Church Clark
4 Brewster Brewster
5 Bible Church
6 CASE Bartlett
:ﬁ] 7 Bayh Byrd (W.Va.)
% 8 Anderson Anderson
=39 Bartlett CASE
! 10 President Cannon
:éj 11 BRCOKE COOPER
I 12 Cannon BROOKE
& 13 AIKEN Bible
% 14 Byrd (W.Va.) President
Y 15 ALLOTT BOGGS
16 BAKER AIKEN
17 BOGGS ALLOTT
18 COOPER Byrd (Va.)
19 BENNETT BAKER
y 20 CARLSON CARLSON
21 Byrd (Va.) BENNETT

3 See Tables 4 and 5 for input data.
bRepnmlicmms in capital letters.




predictable, overall voting patterns based upon ideology are strougly evident, and Senators can
be placed reasonably well on a liberal-conservative spectrum. More important, for our
purposes, it indicates that when a meaningful ordering is inherent in a set of data, the
algorithm will find that ordering.

2. Chronological Ordering in Arckaeology

The algorithm was used to attempt to order a series of archaeological deposits. The
basic data available is the distribution of various types of pottery (eight, in this case) among
various deposits of archaeological interest (also eight, in this case). Robinson (Ref. 30), upon
whose work this example is based, hypothesized that it should be possible to arrange these
sites into a proper chronological order by assuming that pottery types come into and go out of
general use in a regular manner over time, and that, therefore, deposits similar to each cther in
the amounts of various types of pottery will be close to each other in time as well. Thus, if a
satisfactory one-dimensional arrangement of the pottery deposits can be found, on the basis of
a pottery-type percentage array, the sites should be chronologically ordered. This was
therefore used as a test of the Moment Ordering Algorithm.

The raw data matrix presented by Robinson in Ref. 30 is shown in Table 7. If the
algorithm is performed on this array, the solution found is 3A, 2A, 3B, 1A, 3C, 2B, 1B, 2C,
which is very close to that gresented by Robinson, and which satisfies the tests he carries out
on his candidate solution.

Table 7. RAW POTTERY PERCENTAGES

Pottery Deposit
Type 2A 2B 2C 1A 1B 3A 3B 3C
1 24.0 1.4 0.2 11.3 0.3 29.6 54.3 0
2 66.8 0.9 .0 0 0 0 3.5 0
3 1.3 0 0.2 3.8 0.2 14.1 14.0 6.6
4 0 0 0 1.3 0.2 0 1.8 3.3
5 0 0 0 33 0.5 0 5.3 5.5
6 4.0 0 0 24.9 1.4 7.0 7.0 27.5
7 0 97.7 99.3 52.6 97.4 0 12.3 57.1
8 3.9 0 0.3 2.8 0 49.3 1.8 0
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Robinson, however, introduces an “agreement coefficient’ between two pottery types,
defined arbitrarily as:

N
a = 200~ 3~ [Py -Py |, where there are N sites,
k=1

anc Py and ij are the percentages of types i and j in site k. Therefore, ay; = 200 constitutes
total agreement between the composition of two sites, aj; = 0, total disagreement. Robinson’s
resulting array is presented in Table 8. Robinson then attempts to carry out a “rearrangement”
of this array to drive largz numbers toward the diagonal; he describes a semi-systematic manual
method of doing so and presents the resulting order as his solution. The Moment Ordering
Algorithm was run on Table 8 and found exactly the same order #s Robinson’s method—2A,
3A, 3B, 1A, 3C, 1B, 2B, 2C. The reordered matrix of agreement coefficients is shown in Table
9, where it is apparent that the larger matrix elements have accumulated around the main
diagonal of the array. The advantage obtained in using the algorithm, of course, lies in the fact
that it is an automatic, systematic approach and does not require personal judgments to be
made, as Robinsen’s method did. The fact that it reproduces Robinson’s chronological
ordering reinforces the belief that the algorithm is suitable for just this problem—ordering
entities in one dimension based on their interrelationships.

Table 8. AGREEMENT COEFFICIENTS

Pottery : Pottery Deposit
Deposit 2A 2B 2C 1A 1B 3A 3B 3C
2A 200 5 1 39 4 66 69 11
2B 5 200 196 108 195 3 29 114
2C 1 196 200 107 196 1 26 115
1A 39 108 107 200 110 50 82 172
1B 4 195 196 110 200 4 30 119
- 3A 66 3 1 50 4 200 101 27
3B 69 29 26 82 30 101 200 66
3C 11 114 115 172 119 27 66 200
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Table 9. REORDERED AGREEMENT COEFFICIENTS

Pottery Pottery Deposit

Deposit 2A 3A 3B 1A 3C 1B 2B 2C
2A 200 66 69 39 11 4 5 1
3A 66 200 101 50 27 4 3 1
3B 69 101 200 82 66 30 29 26
1A 39 50 82 200 172 1i0 108 107
3C 11 27 66 172 200 119 114 115
1B 4 4 30 116 119 200 195 196
2B 5 3 29 108 114 195 200 196
2C 1 | 26 107 115 196 196 200
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lll. THE MOMENT COMPRESSION ALGORITHM

A. INTRODUCTION

The Moment Compression Algorithm discussed in this chapter is based upon the key
observation that the distinguishing feature of a matrix in perfect block form, (see sketch) when
contrasted with the same matrix after row or column permutations, is that the moment of
inertia of each row and column about its mean is minimized: any row or column permutation
of a matrix in perfect diagonal block form will “expand” a block and make it less dense,
thereby increasing the matrix’s summed moments of inertia. |

[ aans
ofedede
o

Consequently a procedure which minimizes, by row and column permutations, the
sums of the row and column mean square moments about their means will drive the matrix
into perfect block form if this is possible.! »2 If this is not possible, the procedure will still tend
to produce a pleasing pattern because it tries to create dense blocks. This reasoning led to the
development of the Moment Compression Algorithm.

Although Moment Compression has been superseded by Bond Energy both as a
theoretical ME and as a computational procedure, this material is being presented both to
indicate an approach which was explored and found impractical, and to show a logical
stepping-stone in the development of the Bond Energy Algorithm. Moment Compression was
historically important for four reasons:

1. Ambiguity will still exist because
A ‘ C

B and B
C A

will be considered equally good. But one would be indifferent to such ambiguity as long as the variables have been factored
correctly. '

2. This assertion is proved in Appendix C.
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¢ (D It was our first attempt® to describe the appeal of a pattern in terms of
a quantitative ME, the sums of the moments of inertia. This was ‘
motivated by a desire to produce dense biocks of numbers. ;

(2) It was our first attempt to devise an algorithm based on ME- |
optimization. This was in contrast to heuristic algorithms, such as '
moment ordering and some similarity matrix approackes, where it was ‘

not clear what each step in the algorithm was trying to accomplish. In
particular, rigorous optimization of the ME would avoid the problems
of cycling and non-uniqueness* experienced in the Moment Ordering
Algorithm.

(3) It was our first attempt tc devise algorithms which find near-optimal, \
rather than optimal, solutions for the ME. The major pitfall encoun-
tered in the Moment Compression case, but not in the Bond Energy
case, was that the approximate algorithm was slow’ and poor.®

4) It used an ME which decomposed into two parts, one {(sum of the row
moments) dependent only on column permutations and the other (sumn
of the column moments) dependent only on row permutations. Conse-
quently optimization of the ME could be achieved in exactly two
passes, one finding the optimal column permutation, the other finding
the optimai yow permutation. These two passes are carried out com-
pletely independently of each other, and in particular, it is not
necessary to alternate between row and column permutations, as in the
Moment Ordering Algorithm. This decomposition of the ME into two
parts was an attractive feature later used in the Bond Energy ME
(row-bonds and column-bonds being optimized separately).

3, Dr. Gould had earlier suggested use of the matrix correlation coefficient as a guide to the performarnce of the
Moment Ordering Algorithm, but there was no particular pattern that one hoped to drive the matrix into.

4. Cycling can never occur in an algorithm which iteratively optimizes an ME, for the ME is monotone fcom one
iteration to the next. There would still be non-uniqueness if a few permutations achieved the global optimum; this could be
expected only in degenerate cases, and normally weuld not occut. Permutations achieving local (rather than global) optima of
the ME could be discarded on the basis of their inferior MEs, so that many fewer ‘“‘stable’ solutions could be expected than in
the Moment Ordering Algorithm.

1 5. At least a factor of three slower than the Bond Energy Algorithm, and therefore impractical for problems larger
1 than about 25x25.

6. While the algorithm is always smccessful at putting a matrix into near block diagonal form, if this is possible, it had
two major weaknesses of (1) sensitivity of the result to the starting point, and (2) an inability ¢to handle the checkerboard case,
shown in Lig. 6.
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B. MEASURE OF EFFECTIVENESS FOR MOMENT COMPRESSION

As stated above, the measure of effectiveness for Moment Compressionis the sum of
the mean-square” column moments and mean-square row moments. For any NxM non-
negative matrix (bij)’ the ME is

N M
ME(b) = Z I'i + Z Cj
i=1 j=1
where I is the row moment for the ith TOW:
M
TS ek |2
b) M k=1 tk
ri = r. = b.. j -
| 1 &1 1 M
b:
L n=1 mo
>
b
m=1 1

% -
B bk 2
% k=1
c: = b i-
Poy=y 8 N
1 bo
. n=] TlJ o
M
Z bmj
m=1

Y,
Ist A = [aij] be the original NxM non-nepative matrix and let [bij] = {ai, m ﬁ)/]
denote the matrix whose jt! column is the 7 (j)!! column of A, where & = {n(l), 7(2),...,7(M) }

denotes a permutation of {]1, 2,.... M } . The problem of finding the best column permutation
of A is given by

' 7. While any even moment can be used, the second moment is the simplest.
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N
min Z ri(h)
g 1=1
M
= omin 2 Q)
r Jk=1
where
) .
N et gk ,
Qkrs = 2, |- - 1<jkrs <M
i=1 Wi w2
i
M
and w; = Z a;j denotes the row sum for the ith row.
J —

Finding the best row permutation leads o a problem completely analogous to that of finding
the column permutation.

The above problem involves a minimization over all M! possible permutations. It is
called a quadratic assignment problem because of the double appearance of 7 in the minimand.
The problem of ME optimization is consequently equivalent to solving two quadratic assign-
ment problems. (Appendix A demonstrates that the same holds true for the Bond Energy ME.)

As discussed in Appendix A, exact algorithms for solving quadratic assignment prob-
lems are too time consuming to be practical for M larger than 15 or 20. Consequently, an
approximate algorithm was employed to find a near-optimal solution. The approximate
algorithm is a gradient search in M2.dimensional space, and is described in the next section.

C. GRADIENT ALGORITHM FOR APPROXIMATE ME-OPTIMIZATION

The minimization problem posed above can be rewritten as

min Z(X)
XePM

where PM denotes the set of all M! possible MxM permutation matrices (i.e., all matrices of the
form X, = §; 1r(i)) \and where




M
ZX) = ) QrsXinXys = BX) + (X,CX)

./jkrs =1\
M M N oy
BX) = jkz=:l Pk = jkz——:l igl Wy Ak
X,CX) = %4: XikXesCikrs = % "g: uc” XikXr
jkes= 1 Hrs=1 |11 w2 i

Note that C is negative semi-definite:
(y,C,y) < o for any MxM matrix y-

The gradient search was motivated by a paper by Dem’iancv (Ref. 23) Exploiting the
quadratic dependence of Z and the negative-definiteness of C, one writes

Z(X) = Z(X%) + (X-X°, grad Z(X%)) + (X%-X°,C.X-X°)

where the last term is non-positive and where

M
grad Z(XO)Jk = Bjk +2 Z Cjkl‘S Xors
rs =1
Consequently if X is chosen to minimize (X, grad Z(X©)), one finds Z (X) < Z (X9), with
equality usually implying that X° is local minimum of Z.® The following gradient algorithm is
the result:

Step 1. Select an initial permutation matrix xold,
Step 2. Compute grad Z(X°!9),
Step 3. Solve min '(X, grad Z(X°ld)) for the minimizing permutation matrix
XcPM
xnew_
Step 4. If Xnew = xold op xOld = XNeW g54 return to Step 2; if XNeW =
X0l stop.

The algorithm converges to a permutation matrix which generally is a local minimum of Z(X).8
The time consuming portion of the algorithm is Step 3. The minimization in Step 3 is

8. The basic property is that if (X-X°, grad Z(X®))>> 0 for all permutation matrices X, and if (X-X°, C,X-X°) = 0 for
all X for which there is strict equality, then X© is a local minimum for Z(-), where the domain of Z is now extended to the set
of all doubly stochastic matrices. '
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M
i d Z(X°
r:rm [jgl grad Z( )j, W(i)]

where 7 ranges over all permutations of {1,2, cen, M} .

This class of problems is known as linear assignment problems and is most readily solved by
the so-called Hungarian method (Ref. 32). Unfortunately, the labor for the Hungarian method
is proportional to M3 or M4, and since several linear assignment problems must be solved, the
computation time for this gradient algorithm turns out to be excessive for large M.

D. COMPUTATIONAL RESULTS

The gradient algorithm described above was coded in order to provide near-optimal
solutions to the Moment Compression problem. The gradient algorithm is used twice; once to
minimize the sum of the row moments and again for the column moments. The major
computational effort goes into solutions of successive linear assignment problems.

The primary advantages of the gradient algorithm are its simplicity and (as the
following two examples illustrate) its excellent capability for putting a matrix into near
block-diagonal form when this is possible. The primary disadvantage is the large computer time
(a factor of three greater than for the Bond Energy Algorithm), rendering the method
impractical for matrices larger than about 25x25.

The excessive computational effort arises from two sourcss. One is the need to solve
successive linear assignment problems, each of which is time consuming. The second is the
existence of several local minima for Z(X), with the consequence that the final data ordering is
somewhat sensitive to the initial data ordering. (The Moment Ordering Algorithm has similar
properties.) It therefore is necessary to start the algorithm at several randomly-selected initial
permutations in order to achieve a final permutation for which Z is close to its global
minimum. The need for multiple starts increases the computational effort many-fold. |

1. First Example

A 16x16 example from Ref. 33 was solved with the gradient 'algon'thm for moment
compression. In this example, the 16 most frequently occurring non-trivial words have been
extracted from a long conversation. The input matrix, A-1, is shown in Fig. 27. A “1” is placed
in row i and column j if words i and j have coincidentally occurred in two or more sentences,
and a “0” is placed there otherwise.
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FIGURE 27. Initial Word Relationship Array, Matrix A-1

Since the input matrix is symmetric, the problems of choosing permutations to
minimize the row or column moments are identical. It sufficed to find the optimal column
permutation, and to use this permutation on both the rows and columns of the matrix. The
problem of row moment minimization was solved 40 times, ecch time starting from a
randomly chosen permutation of the columns. Two sclutions are taken as identical if thoy
differ merely by reversal of the order of the 16 words.

The results were as follows. Nine of the 40 starting-points led to the final matrix, A-2,
shown in Fig. 28, with the lowest ME. An additional 11 of the 40 starting-points led to a final
matrix (with the same ME) which differed from A-2 only by interchanging of the variables
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FIGURE 28. Reordered Word Relationship Arrays
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“bed” and “lips”. Since these two variables have identical rocws and columns, it is under-
standable why ambiguity arises about their ordering.”

Inspection of Fig. 28 shows that the algorithm has partitioned the 16 words into three
subjects: vacation, sex, and sports. The transitional words between these three topics of
conversation are evidently hotel, hot, court, and leg.

All remaining 20 starting-points led to a ME which was at least 11 percent higher.1°
Inspection of the next-to-best permutation (the one with an ME 11 percent higher than that
of matrix A-2) showed that the gradient algorithm converged to the wrong local minimum of
Z(X), in which only one of the three topics of conversation (sports) is clearly identified.

It is believed that Matrix A-2 (and the variations obtained by permuting identical rows)
achieves the global optimum of Z(X), although this is not certain. It must be recalled, however,
that the primary goal is the discovery of informative patterns, not rigorous optimization of the
ME. For examnl., the rearrangement proposed by Giuliano, Matrix A-3 in Fig. 28, is just as
pleasing as A-2, even though its ME is not as good. The point here is two-fold: (1) data
rearrangements with near-optimal ME may be as pleasing as those with optimal MEs; (2)
ME-optimization algorithms can fail to identify all informative patterns, especially patterns
which are not local optima for the ME.!?

The Moment Compression Algorithm is considered to have worked properly on this
example because it produced a pleasing pattern. The sensitivity of the gradient algorithm to
the starting point was not a serious problem, for 20 of the 40 starts led to a good answer.
Note, however, that a mere 11 percent degradation in the ME led to a seriously degraded
pattern.

The main criticism of the gradient algorithm for Moment Compression is its excessive
computation time. Each usage of the algorithm required 3 to 7 gradient steps (i.e., solutions of
3 to 7 linear assignment problems) at about 2 seconds per step. The algorithm therefore
required about 10 seconds per starting point.!? Since 40 starting points were chosen, at
random, to ensure high confidence in achieving a global rather than local optimum,!3 7
minutes*® were required to solve this problem.

9, It should be pointed out that this example exhibits considerable degeneracy. Examination of Fig. 33 reveals that
rows 7-9, rows 10-11, and rows 14-16 are identical. The ME will be invariant under permutations of identical rows. In
addition, rows 1-4 and rows 5-6 are nzarly identical; the ME will undergo only minor changes if these are interchanged.

10. The ME is here defined as the roct-mean-square row moment,

1 16 |
ME = '1-"6" 2 l'i

i=1

11. Since the starting points never led to A-3, A-3 probably is not a local minimum for Z(X).

12. By contrast, the Bond Energy Algorithm requires ouly a few seconds per starting point.

13. By contrast, the Bond Energy Algorithm is rather insensitive to the starting point, so that fewer starting points (at
rmost 16, and probably much less) need be explored.

14. On CDC 1€04.
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It may be possible to cut the running time by a factor of 2 or 4, since a “good” starting
point may require fewer gradient steps than a randomized one, and by using much fewer than
40 starts. Nevertheless, the running time for a 16x16 problem (on the order of minutes, and
doubled if the matrix is not symmetric) is disappointing when contrasted with the running
time for the Bond Energy Algorithm. Consequently the gradient algorithm for Moment
Compression Algorithm is probably impractical for problems larger than 25x25 or so. It works
well, but is too slow.

2. Second Example!’

A second example was run in order to test the ability of the gradient algorithm to
generate clumps of large numbers when the matrix elements were not restricted to Oor 1. The
initial matrix is the 10x10 matrix denoted as B-1 in Fig. 29. Since B-1 is symmetric, it sufficed
to find the optimal row permutation, and to use this permutation on both the rows and

columns of B-1.

A B CDEF GH i J
A5 4 1 0 4 1 1 0 3 1
B|4 5 0 1 3 1 1 0 4 1
c{1 o 5 0 1 3 3 0 1 2
D,0 1 0 5 0 0 O 4 0 1
-4 3 1 0 5 1 0 0 4 1
F{i1.1 3 0 1 5 3 0 1 3
G|1 1 3 0 0 3 5 0 1 2
H{0O 0 0 4 0 0 O 5 1 O
I 13 4 1 0 4 1 1 1 5 1
JJ1 1 2 1 1 3 2 0 1 5
11-13-69-6

FIGURE 29, Initial Similarity Motrix B-1

The gradient algorithm was used with 60 randomly chosen starting points. Four
distirict MEs!® were obtained, with values 1.846, 1.987, 1.988, and 2.314. The frequency of

15. This is the same example as in Figs. 7 and 8.
16. The ME is here defined as the root-mean square row moment-arm,

1 10

ME = _16 i§1 4]
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these MEs were, respectively, 36, 12, 8, and 4 (sum of 60). The matrices corresponding to the
four MEs (the best four permutations'?) were respectively, B-2, B-3, B-4, and B-5 and are
shown in Fig. 30. These four MEs are fairly close to one another and it is apparent that the
patterns in B-2, B-3, B-4, and B-5 are essentially equivalent and equally pleasing; all four

matrices succeed in identifying a 2x2 block of large numbers (variables H and D), a 4x4 biock
(variables £, B, E, and I) and a 4x4 block (variables C, F, G, and J). The exact order of the
blocks, and of variabies within each block differ, but one would be indifferent to such
unimportant differences (i.e., to the arrangement of the stray 1’s) since the identification of
the blocks of primary blocks is what is significant.

The computation time for this problem was about 3 seconds per starting point. The 60
starting points consumed about 3 minutes total computation time! 8.

Summarizing, the gradient algorithm applied to this problem succeeded, in all 60 of the
starts, in identifying the major variable blocks and produced informative patterns. The four
best permutations produced ne¢aidy equal MEs and equally informative patierns, without any
obvious way of chocsiiig among them. The algorithm is considered successful, but rather slow,
for this problesi. It correctly “factored” the main variables, bul was very time-consuming
compared ‘with the Bond Energy Algorithm.

17. Two permutations were considered equivalent if each could be obtained from the other by merely reversing the

order of the 10 rows and columns.
18. On CDC 1604 computer.
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FORMULATION OF THE BOND ENERG'Y ME OPTIMIZATION
AS TWO QUADRATIC ASSIGNMENT PROBLEMS

The purpose of this Appendix is to show how the problem of ME maximization can be
rigorously formulated and solved as two Quadratic Assignment Problems (QAPs). This form-
ulation is presented only for theoretical interest, because published algorithms (Refs. 21, 22,
23) which find truly optimal solutions to QAPs are too time consuming to be practical for
large problems.! While approximate algorithms have been published? (Refs. 24, 25, 26, 27)
which find near-optimal solutions to QAPs, it was not believed worthwhile to explore any of
them, because none exploited the nearest-neighbor feature of the function being optimized.
Only the sequential-selection approximate algorithm described in this paper exploits the
nearest-neighbor feature, and this latter algorithm is believed to be much faster, more
convenient, and just as satisfactory® as the published approximate QAP algorithms.

Suppose the original non-negative matrix [aij] is M x N with horizontal and vertical
bond energies contributing to the ME. The ME then consists of the sum of two terms, namely,
the row bond energies plus the column bond energies. Two optimization problems must be
solved for ME maximization. One seeks a permutation of the columns of [aij] which maximizes
the row bond energy, the other seeks a perinutation of the rows of [aij] which maximizes the
column bond energy. These two optimization problems can be carried out independently of
each other. When both are completed, the optimal permutations of both rows and columns are
known.

The two optimization problems‘ are mathematically equivalent. Only the problem of
maximizing the row bond energy is presented here. This problem requires selection of a
permutation 7 = [7(1), ®(2), . . . , #(M)] of the integers [1, 2, ..., M] which maximizes

M-1

N
1
3 i;l {bilbiZ ¥ jf___;z by [bi,j-1 *+ byj+1] + biMbi,M-lz. (A-1)

1. Computer times on the order of one or several minutes are required for 15x15 matrices, and rise as the fourth and
fifth power of the matrix size.

2. 'An extensive bibliography is contained in Ref. 26.

3. The satisfaction with the Bond Energy Algorithm is not based primarily on how close it comes t- achieving the
global optimum in Eq. (A-2) but rather on the pleasing patterns of clumps which it produces.
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The term within braces is twice the bond energy for the ith row of [bij], where Ebij]l = {ai,n(j)]
denotes the matrix whose jth column is the w(j)th column of [aij] . The mathematical
problem may be rewritten as

M M
max 3 Y QkrG)mk) (A-2)
T ji=1 k=1
where
N
Qkrs = iz:l e aj [0y j- 1 + By, j+1] (A3)

1<j,k,r,s<M

The maximization in Eq. (A-2) is taken over all M! possible permutations. This type of
maximization is known as a quadratic assignment problem because of the double appearance
of m in the maximand. As previously noted, published algorithms exist for finding both
optimal and near-optimal solutions to Eq. (A-2).

INTERPRETATION OF ME OPTIMIZATION AS TWO TRAVELING SALESMAN PROBLEMS

The quadratic assignment problem formulated in the previous section is actually a
special type called the open-loop traveling salesman problem. Let

N

4 = . Qs =
Srs Z 2y 2jg = dgr
i=1

th

denote the scalar product of the r™ and sth columns of [aij]. Then, the maximization in (A-2)

is equivalent to
M-1
max 3 drGymG+1). (A-4)
T i=1
If one interprets d as the distance # from city r to city s, the problem in Eq. (A-4) is to find
the salesman’s tour [from city m(1) to 7(2) .. to city m(M)] of the M cities which has the
longest distance.’ Note that the tour origin is arbitrary and that the salesman is not required to
return to his origin. This tour is therefore called open loop.

4, If necessary, a large positive constant can be added to all ds in order to make them positive.
5. Subtraction of every drs from a large positive constant leads to an equivalent problem of minimizing the tour

length.
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PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE

BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO
BY ROW AND COLUMN PERMUTATIONS
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PROOF THAT THE BOND ENERGY SUBOPTIMAL ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DG SO
BY ROW AND COLUMN PERMUTATIONS

The purpose of this appendix is to prove that the sequential selection bond energy
algorithm will put a matrix into block factored form if it is possible to do so by row and

column permutations.

DEFINITION 1

A non-negative matrix A whose elements ay; relate row entity i to column entity j is
called block factorable if the row entities can be decomposed into q disjoint subsets
RiRy, ... Rq, and the column entities decomposed into q disjoint subsets C;,C,, . . . Cq with
the properties:

(1) If entityie Ry, then aij=0

wnioss entity je Cg, 1<a <q
and if entity j € C,, then ay; = 0
unless entity i e R, 1 <a<q /
2) For each a, the submatrix { [aij ], ieRg, je Ca}
cannot be further decomposed. ‘

That is, A can be factored into q blocks if the row entities and column entities can each be
partitioned into q subsets such that: (1) entities in one row subset interact only with entities in
the corresponding column subset and (2) it is impossible to decompose the subsets further.

DEFINITION 2

A block factorabie matrix is said to be in block factored form! when all the row
entities contained in each R, lie together on the vertical axis of the matrix and all the column

1. Figure 4 shows a matrix in block factored form.
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entities contained in each C, lie together on the horizontal axis of the matrix. Clearly, the
matrix A is block factorable if, and only if, it can be put into block factored form by row and
column permutations.

LEMMA 1

Assume A is block factorable. If row entity i of matrix A is contained in R, and row
entity j is contained in Rﬁ with a#g,then the scalar product of row i with row j vanishes.

Proof

For any entity k, a;,=0 unless keC, and a;,=0 unless keCg.  Therefore,
aj ajk=0 for all k since C, and Cﬁ are disjoint.

LEMMA 2

Assume A is block factorable and select any R, which contains two or more rows. No
matter how R, is split into two distinct subsets, it is always possible to choose one row
from each subset such that the scalar product of the two rows is positive.

Proof

If such a choice cannot be made, then the submatrix Maij]l, ieR,, jeCq } is
decomposible, violating Definition 1.

THEOREM

If A is block factorable, then the sequential selection algorithm will put the matrix into
block factored form, and will do so by building one block at a time,

Proof

If the first row laid down came from (say) Ry, then the next row to be laid
down will be one of the remaining M-1 rows with the greatest scalar product
with the first. Since (by Lemma 1) all the rows not contained in R; have
vanishing scalar products with the first row, and since at least one (by Lemma
2) of the as yet unplaced rows from R; (if any others exist) has a positive
scalar product, then the second row to be iaid down will come from R;. By

86




t o ]

S el 00 Ppeessmeny 000 Pl 0000 P~ 0000 Py

repeating this reasoning it is clear that all the rows from Ry are laid down
before any other rows are laid down. More generally, one subset, R, of row

entities at a time is laid down and all the rows contained in each Ra lie together
in the matrix.

Identical reasoning can be applied to show that the columns are also laid down
with all the columns in each C, lying together. Therefore, by Definition 2 the
matrix will be put in block factored form.
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PROOF THAT THE MOMENT COMPRESSION ALGORITHM WILL PRODUCE
BLOCK FACTORED FORM IF IT IS POSSIBLE TO DO SO |
BY ROW AND COLUMN PERMUTATIONS

The assertion here is that the minimum of the ME! of a matrix which can be placed in
block form via row and column permutations occurs when the matrix is in block form, and
does not occur when rows (or columns) of one block are separated by rows (or columns) of
another block. Consequently, rigorous minimization of the ME must put the matrix into block
form. Since the gradient algorithm for moment compression will find a global rather than local
minimum of the ME, if sufficiently many starting points are used, it follows that the gradient
algorithm will put a matrix into block form if this is possible.

It suffices to examine how column permutations can minimize Z; r;. The basic idea of
the proof is that if the columns from one block are separated by columns from another block,
then removal of the extraneous columns, reuniting the coiumns from the first block, and
reinsertion (at one side) of the removed columns will strictly reduce Z; r;, hence reduce the
ME. Thus, the ME is at its minimum only if columns from the same block are contiguous.

An example is provided by Fig. C-1 which shows the 5 left-most columns of a matrix.
At least one X in each column is positive. Columns A, C, E form a block; no column to the
right of E lies in this block; and columns B and D are from other blocks.

The following theorem shows that if column D is moved out to the right of the block
(producing the column order A,B,C,E,D), then Z;r; will decrease. Similarly, movement of
column B to the right of the block (producing the column order A,C,E,B,D) will reduce o
further.

N
ME= Y 1 + 2, ¢ |rj = momentarm for row i
= ) moment arm for column j

—t
b
|
L
i
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COLUMN:
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FIGURE C-1. Sample Matrix

The general procedure is to identify the lefi-most column block whose columns are not
placed contiguously,? and to move the right-most extraneous column® from the midst of the
block to the immediate right of the block. Repetition of this procedure produces a column
oidering which places columns from the same block in contiguous positions. Since the
procedure leads to strict decreases in Z.r;, it shows that the ME achieves its global ME only
when the matrix is put into block factored forr.

The theorem which follows shows that each r; is decreased if the zeros which are
interior to a row are moved to an edge of the block, and is unchanged if a zero at one block
edge is moved to the other block edge. Thus moving columns B and D to the right of E will
reduce

i=1

because the first 3 rows have an interior (or possibly left edge) zero at column B, and an
interior (or possibly right edge) zero at column D. Similarly,

7

2

i=4
is also decreased by such a transfer because columns C and E provide interior zeros to rows
4-7.

2. ‘Initially, this is block A,C,E.
3. Initially, this is column D.
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THEOREM N

N -
>0, 3 Wi=1,j= 2 W
=1 =1

Let Wj

N
8 = j; w; [i-i] 2 = moment for the vector 'W.
Suppose for some k, 2<k<N-1, W} =0. Let * refer to a rearrangement whereby Wy has
been moved to the extreme right, and the vector then closed up:

. W. 1<j<k-1
.= W j<N-1
‘VJ ! _]"’l k<]\ (C"l)
\ 0 j=N
N N
=% _ bow* -7
i = ), iW. =j-p wheref= W.
=1 ! j=zk:+1 4 (C2)
* L
S = j}{:l' W [~} ]“ = the moment for the vector W*. (C-3)

Then S* < S with equality if and only if Wy is an edge zero (that is, if W;=0 for all j=<Xk, or if
— - J ’
Wj-O for all j=k).

Proof:

Se't3'= E + F where

k-1 k-1 |
E= ), wi<k-) Y w=0-HE&-1 (©4)

j= ]=l

(C-5)

N N
F= 2, wizk+t]) Y w =Bk,
. :

+1 ji=k+1




Insertion of Eqs. (C-1, C-2) into Eq. (C-3) obtains

« N
S 'S=53(1'B)+2 Z W]U-])
i=K+1

=B(1-B) + 2 Bj-2F = p(1-B) + 2BE + 2(B-1)F

Insertion of Eqs. (C-4, C-5) produces, because 0 < < 1, the result

s*.s<- 38(1-8) <0 with s*=§ only wien Bis 0 or 1, which occurs only if wy is an

exterior zero. Thus S* = § only if wy is an exterior zero. The converse is easily proved. QED.

Note that with the choice

Wi= a; / 2 apy

we find S=r; = moment for ith row of [aij]' The theorem therefore states that the * -
rearrangement (namely removal of an interior zero from the ith row of I[aij]l) will strictly

reduce r; unless the zero lies at an edge.
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THE BOND ENERGY COMPUTER PROGRAM
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THE BOND ENERGY COMFUTER PROGRAM

A. OPERATION OF THE FROGRAM

The computer program for the Bond Energy Algorithm consists of two separate parts.
The first part of the program reorders the columns while the second part reorders the rows.
Figure D-1 shows the essential program logic for selection and laydown of the rows to ottain a
new order with a large NME. The logic for the column selection is identical. It was found that
in order to examine a number of local minima it was necessary to initiate the program at
several starting rows (or columus). However, as pointed out in Chapter I of Part II, almost all
starting points (rows) resulted in a “good” solution.

B. CARD INPUT FORMAT
The input format that is described here is for arrays with integer elements. The only

change that would have to be made to accommodate decimal entries is in the input and output
formats for the initial and reordered arrays.

a. Card 1 Format (415)

MM = number of rows in the matrix
NN = number of columns in the matrix
IFZ1 = an increment to determine the starting columns or rows.

If IFZ1 = 5 then the algorithm is run K times beginning
with row 1 then row 6, and continuing in increments of
5 until K*IFZ1 + 1 > NN or MM

0 or Jlank if the input array is not symmetric

1 if input array is symmetric

IFSYM

b. Cards 2 through MM + 1 Format (80I1)
(NA(LJ), J = 1, NN) is the I! row of the input matrix. This card
is repeated for all MM rows.
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ENTRY

|

COMPUTE AND STORE THE
SCALAR PRODUCTS OF ALL
M ROWS WITH EACH OTHER

|

LAYDOWN FIRST ROW AND
SET i=1, WHERE i IS THE
NUMBER OF ROWS ALREADY
PLACED

SET k=1, WHERE k = NUMBER

OF THE ROW WHOSE INCREMENTAL
CONTRIBUTION TO THE ME WILL
BE COMPUTED

[seTk=k+1]} »| €
Ao |
YES HAS ROW k ALREADY STk
BEEN PLACED?
YES 1
1NO

SET j=0, WHERE j=THE
ROW POSITION UNDER
CONSIDERATION

J‘_
COMPUTE INCREMENT TO ME
BY PLACING ROW k IN

POSITION j

SAVE POSITION PQS (k) WHICH
GIVES GREATEST INCREMENTAL
CONTRIBUTION TO ME FROM
THE PLACEMENT OF ROW k

LAYDOWN ROW k* IN POSITION
POS (k*) WHERE k* IS THE ROW
WH.ZH WHEN PLACED IN POS (k*)
GAVE THE GREATEST CONTRIBU-
TION TO THE ME

{SET i=i+1]

10-29-69~1

FIGURE D-1. Flow Chart for Sequential Row (or Column) Selection and Laydown
for Bond Energy Algorithm
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C. PROGRAM OUTPUT
The computer program GROUP 2 consists of the following output information:
(1) A printcut of the input cards.

(2) A printout of the new row and column orderings at each step in the
sequential laydown procedure. i

(3) A printout of the final reordered matrix.

4) A printout of the final horizontal and vertical MEs.
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100

12

101
102

BOND ENERGY ALGORITHM PROGRAM

COMMON MM, NN
COMMON NA(90,90),K090),L(90),MECO0),NPOS(90) /NS
SET INPEX G » K, W = L

IDIM = 99

READ 400,MM,NN,IFZ1,IFSYM
IPCIFSYM,ED,«0) IFSYMsO
PRINTL00,MM,NN,IFZ2L,IFSYM
FORMAT(ATS)

DO 1 IIi.MM

READ 101, (NA(I,U)sdsl,NN)
Do 12 Jxi,NN

IFINACT,J), EQ.=0) NACT,J 1m0

CONTINUE

PRINT 102, (NACT,J)sJul, NN)
CONTINUE e

FORMAT (8nZ1!
FORMAT({X,8912}

DO 22 KKks=i,NN,IFZ1

DO 2 Imq,MM

KiI)sI

DO 3 Jmsi,NN

LtJd) © IDIM « (Jed)
K(i)nﬂ!

K(KK)®m3

ITEMPL = L (1)

Led) = LixKk)

LIKK) = TTEMPL

NTICK®o § MTICKsO

MElwoSME2mO
NyeaNNwq

DO 150 NCOUNT=1,N1
NClsngONT+L

Do 200 J=NC1,NN
ME(J)wD
NPOS(J) a0

DO 240 Nm0,.NCOUNT
N§UMa1000

DO 214 Ix={,MM

G 8 K(T) « L(J)

H s K(T) & LIN)

M a KTy o L({Neli?

v N,E0,0380 TO 282
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212

213

214

214

210
200

220

140

145

1%0

182

Ir (NA(G).EQ.D) GO TO 213

IF (NA(H).EQ.0) GO TO 212

NSUM ® NSUM &« NA(KW) % NA(G)

IF(NLED NEOUNTIGO TO 211

IF (NAtM),EQ.0) GO TO 211

NSUM = NSUM « NAIM) * NA(R)

IF(N,EQ D,.OR,N,EQ,NCOUNT) GQ To 241
Ir (NA(H).EQ.D0) GO TO 214

NSUM = NSUM w NAIM) * NA(HW)
CONTINUE

IP(NSUM, LY, MECJU))IGO TO 210
IFt(NCOUNT.EQ,1) GO TO 214

IFP(NSUM NEMECJ)) GO TO 214 ,
IF(N,EQ,0,0R.N,ER.,NCOUNTY GQ TO 214
Go 70 21N

CONTINIIE

ME(J)aNSUM

NPOS(JY)eN

CONTINUE

CONTIMNUE

MEMAXEME (NCY)
NRMAX®MNPOSINCL)

IMAX=ENCL

NCZuNCOYUNT#2

DO 220 I=NG2,NN

Ngwsl

IF(ME(T) LT .MEMAX)GO TO 220
IF(ME(TY.EQ.MEMAX) CALL EQ2I(I,IMAX)
IF(NSW,NE.L1) GO To 220
IMAX=Y

MEMAX®ME (T)

NPMAXmNPOSI(T)

CONTINUE

MELBMET & MEMAX~1000
IF(NPMAY . NE.NCOUNTIGO TO 440
NNLi=L(TMAX)
LIIMAX) ml (NPMAX+1)
LINPMAX41)BNNL

GO TO 480

IF(NPMAY ,NE,0) NTICKSNTICK#}
NPISNPMAX WY

NSAVEs| (IMAX)

NP2sNP141

FOR 148 TesIMAX,NP2,1
LtD)sLeyed)

CONTINUE

LENPLISNSAVE

PRINT 105, (L(I)/IDIMes, IBLi/NN)

IF(IFSYM,EQ,0) GO TO 1514
DO 152 Is{,NN

KeI)mL(T) » IDIM o 1
MPReME1

MPICKaANTICNK
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151
135

412

413

411

414

410

400

GO TO xsi

CONTINUE
FORMAT(40I3)

Mi'MM-i

DO 350 MCOUNTE=Y, MY
MClamEopnT el

DO 400 1=mMLC1, MM
ME(I) =D
NROS(I)el

DO 440 M=g,MCOUNT
MGUM=1000

DO 411 =g ,NN

G = K(I) « L(J)
H o= K(My o L(J)
N s (Ml + LLJ)

IF(M,EQ.n¥G0 TO 412

IF (NAtG).EQ.0) GO TO 413
If (NA(H).EQ,O0) GO TO 412
MSUM m MSUM &« NA(H) * N4it(G)
IP(M,EQ . MEOUNT)IGOD TO 413

IF (NAVNY.EG,0) GO Y0 411
MSUM = MSUM + NAIN) * NA(G)
I#iM,EQ0.ND,OR.M,EQ,MCOUNT) BT TO 411
IF (NA(H),EQ.0) GO TO 411
MSUM & MSUM o« NA(H) * NA(N)
CONTINUE

IF(MSUM LY, ME(I))IGO TO 410
IP(MCOUNT.EQ.1) GO TO 4l4

IPIMSUM NEME(T)) GO TO 416
IF(M,EQ.0,0R,M,EQ,MCOUNT) GO TO 414
GO TO 41n

CONTINUE

ME(I)mMSUM

NPOS(I)aM

CONTINUE

CONTINUE

MEMAXEME (MEY)

NPMA XBNPOS(MCL)

JMAXmME

MclecﬂUNTtg

Do ‘f° YsMC2, MM

NgW=m

IPCMECT) LT . MEMAX)IGO TO 420
IPCMECT)Y EQ.MEMAX) CALL EQ2J(I,dMAY)
IP(NSW,NE.1) GO TO 420

JMAX =T

MEMAXRME(T)
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420

340

345
350

351
352

500

22

50¢
501

503

701

702

703

704

NPMAXBNPOS(T)

CONTINUE

ME2ZMEZ 4MEMAX=1000
IF(NPMAY,NE,MCOUNTIGO TO 340
MMimK(JMAX)
KEJMAX) mK {NPMAX+1)
KINPMAX 44 YaMML

GO TO 38"

IF(NPMAY,NE,0) MTICKEMYICK#}
MRPLlaNPMAX®Y

MSAVE =K ( JMAX)

MPp2eMPY L1

FOR 345 JsJMAX,MP2,1
KidyaK(gml)

CONTINIUE

KIMPL)aMSAVE

PRINT 408,(K(J)sJEl, MM)

po 352 g = 1,NN

L(G) = [(GI/IDTM + 1

PRINT 503, (LCJ)sJ=1NN)

DO 500 yul,mMm

PRINT §01,K(T), (NACKEI),LtJ))aJodsNN)
CONTINUE

PRINT 502,NTICK,MTICK,ME1,MB2
CONTINUE

FORMAT( /215, 5%, *ME nw, 15,54, 9ME2nv,18//)
FORMAT(1x%,12, 2x,5712/)
FORMAT (1M1,//5%,8712//)

END

SUBROUTINE EQRIC(IX,IM)

COMMON MM, NN

COMMON NA(90,90),Kt90),L (901, MEC90),NPOS(90) ) NSH
SEY INDEX G ® K, W = L

NSWap
IF(NPOS(IT).EQ,NPOS(IM)IGO YO 701
RETURN

DO 702 twi,MM

G = K(Ty &« L(ID)

Ho® KTy & LIIM)

IP (NAZGY.NE.NA(M)) GO TO 783
CONTINUE

RETURN

NSUMimp

NSUM2Zm D

DO 704 I=1i,MM

G = K(I) o L(ID)

Hos K(T)y o LIM)
NSUML = NSUMI « NALG)
NSUM2 = NSUM2 o NA(H)

IP(NSUMY LT NSUM2INSWmy
RETURN
END
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SUBROUTINE EQ2J(JJsJM)
COMMON MM, NN
.. COMMON NAt90,905,090),t90),MECQC),NPOS(90),NSH

NSWE(
IF(NPOS(JJ),EQ NPOStJUMYIGO YO 701
RETURN

701 DO 702 Tet,NN

G = K(JJ) » LI

Hox K(JM) « L(T)

IF (NA(G).NE.NA(HY) GO TO 703
702 CONTINUE

RETURN

708 NSUM1imp
NSUM2m0D
DO 704 Tei,NN
G = KtJdu) w L(I)
Hom KEuM) » L(T)
NSUML = NSUM1 « NA(G)
704 NSUM2 u NSUM2 e NA(H)

IP(NSUME LY NSUM2)NSWmY
RETURN
END

SUBROUTTINE EO1
c TEMPORARY SUB
PRINT 930
90C FORMAT(FNTER EQ1iv)
i END
END
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A. INTRODUCTION

THE MOMENT ORDERING COMPUTER PROGRAM

Two versions of the program are available. One, which handles arrays of size up to
100x16, reads the arrays directly from cards. The second, which is identical to the first except
in its input-output procedures, can handle arraysup to 1 00x100 and reads its arrays from tape.’
Because the two are so similar, only the first will be presented here; most of the discussion,
however, applies equally to beth versions. A flow chart showing the main program logic is
given in Fig. E-1. The following section provides instructions for the use of the program;
Section C describes the program output.

B. INSTRUCTIONS FOR USE OF “MOMENT”

The following are the instructions for use of the momeat program.

(1)

(2)

(3)

4)

Arrays of size up to 100x16 may be analyzed with the card input
version of the program; up to 100x100 with the tape input version.

Arrays for the card input version are punched onto cards, one row per
card, as five-place floating-point numbers.

As many separate arrays as desired may be analyzed in one computer
run. Each may be solved once, or, if desired, any number of times, with
the starting ordering chosen at random. In the latter case, the overall
averaged solution is given as well as each individual solution.

The following data cards are necessary for the program:

(a) A card with 8 random integer digits in columns 1-8. This is
always the first card of the input data deck, and is required to
initialize the random number generator.

1. The only modifications necessary are in the form of the input data.
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A
> INITIALIZE
ENTRY PROGRAM
i
READ IN A
NEW ARRAY

TO BE ANALYZED
IN RANDOM MODE?

NO YES
¥

v C

RANDOMLY
ORDER ROWS

I

CALCULATE {NITIAL
CORRELATION COEFFICIENT

Y 4 :

DO ROW AND CCLUMN OPERATIONS
CALCULATE CORRELATION COEFFICIENT

HAS ARRAY RETURNED
TG OLD FORM?

NO - YEES
\ A

~

IS IT BEING ANALYZED
IN RANDOM MODE? : N

I |
NO YES
v F \ 4

PRINT SAME SOLUTION AS
SOLUTION PREVIOUSLY FOUND?

<4 1] NOJ LYES

ALREADY HAVE ENOUGH
DIFFERENT SOLUTIONS?
L 1
YES NO
v

H » G

STORE NEW SOLUTION; INCREMENT CLD
PRINT SUMMARY SOLUTION'S COUNTER

v

ENOUGH RANDOM
ATTEMPTS ?

+ ;-—I——YES-—J | l—NO—)——-

SUMMARIZE AND
PRINT ALL RESULTS

3-27-469-14

4

FIGURE E-1. Flow Char: for Moment Ordering Algorithm
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-
O
U

t

2340795

3 5SAMPLE DATA

(b)

(c)

(d)

A card with “FINIS” in columns 1-5 as the last card of the data
deck.

In between the previous two cards, separate packets of data
cards, one for each array. If an array is to be analyzed in the
random mode, the first card of that packet must contain the
number of random tries (an integer) to be carried out in
columns 1-4, and the work “RANDOM” in columns 9-14. If
this option is not to be exercised, this card is merely omitted.
The next card (therefore the first card for the one-time-only
option) contains the number of rows (integer) in columns 1-4,
the number of columns (integer) in columns 5-8, and the name
of the array in columns 9-80. This is followed by the cards -
containing the array proper.

As many packets of cards for individual arrays as desired may
follow each other. A sample data deck for the card input
version is shown in Fig. E-2. (A deck for the tape input version
could be identical except that it would not have the cards with
the arrays themselves punched.)

-<«=RANDOM NUMBER
-<e=HEADER CARD, ARRAY 1

1.0 3.0 0.0 0.54 11.3
8.4 2.7 6.11 12.04 18.1 ARRAY 1
0.0 14.0 111. 6.08 1.0
10 RANDOM <=RANDOM CARD, ARRAY 2
4 2MORE SAMPLE DATA ~<—HEADER CARD, ARRAY 2
1.0 2.4
1.0 3.7 ARRAY 2
0.0 2.15
1.0 6.0
2 3MORE SAMPLE DATA ~<=HEADER CARD, ARRAY 3
4.1 7.9 6.1 ARRAY 3
4.2 0.0 7.0
EINIS ~<—LAST CARD
11-13-69-13

FIGURE E-2. Sample Data Deck for Card Input Version of Moment

Ordering Algorithm
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C. “MOMENT” PROGRAM OUTPUT

The program output consists of the following:

(1)

(2)

(3)

(4)

For each array analyzed, the program prints out a complete copy of
the array as read in, numbering the rows and columns.

If only a single analysis is to be done, the program first prints out the
initial value of the correlation coefficient, R, and then after each row or
column operation prints out the entire array, numbering the rows and
columns appropriately and giving the new correlation coefficient. When
it reaches a solution, it prints the array and the message “THIS IS THE
SOLUTION.”

If the random-ordering, multiple-attempt option is being employed,
each time a new solution is found the program prints out the order of
the rows and the value of the correlation coefficient. When it has
finished the appropriate number of attempts, it prints out a complete
copy of the most-commonly-found solution and lists all of the solutions
found, giving the correlation coefficient, the number of times found,
and the order of the rows for each. It then lists the overall averaged
solution, giving the ordering of the rows and columns, and the average
position (with the RMS deviation) of each row and column.

If the program encounters an unstable array structure (i.e., one in
which no solution may be found, but rather a cycle of states occurs
which will repeat itself indefinitely), it takes that as a solution, but first
prints the message “THE FOLLOWING SOLUTION IS NOT
STABLE.”
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wane

14
12

MOMENT ORDERING ALGORITHM PROGRAM

PROGRAM MOMENT
TRACE ARRAYS
SYEFMEN DEUTSCH,EXT.358,SED
COMMON A(400,1¢)
DYMENSTIAON NARRAY(5000)
DIMENSTON NsoLStgs.%%a
M Y] ¢
g§mgxgigz soLstes, M(iooioN¢16$oMT(100)aNT%16)oHTO¢100)oNTO(16)
DIMENSTON NM¢100),pM0¢100),0N(16),nNOCL6),LEXTID)
DIMENSTON ROLD(100),NoLpei0d)
DIMENSTON RSAVE(100) ,
I IND M REFER TO COLUMNS, J AND N TO ROWS
Eps.ioEné
TLEFTsp,
TNOWECLOCKTM(TLEFT)
IF(TLEFT.LY,1000,) GO TO 164
CALL SLURP(NARRAY,5000,0)
CONTINIIE
READ 42,NDUM
FORMAT(TI8)
RANSRANAF (NDUM)

1 CALL READIW(MC,MSIZESNSIZE,)EEATeM)NoMCoNLMINMAK)

[N
<>
<>

Y

IP(MC,E0.L) CALL RANORD(M,MILZETNME)

Rhl.?,

NLIST=o

CALL CC(MSTZE,NSIZE, M,N,R)

Ir(Mc NE.LIPRINT 10g,R

CONTINUE

CalLL Nint M, N,MSTZESNSTIZE,B)MTOINTO,DNSDNOSMT,NT,IEXT,HMC)
TPinc Ne §yR INT 108,R

IP(MC,NE,1)PR . .

CaLL Mige M,N,MSIZZ s NSTZE,RyMTOINTO,D¥aD¥0, MT,NT,IEXT,MC)
CALL DUMP(S)

IP(MC.NELLIPRINT 108,R

FORMAT( /% Raw,F10,5)

IF(NLISY, E0.0) GO TO 9

DO £1 Tei,NLIST :

IltABS(R-RSAVE¢I)bégiiﬁgS) Qo TO 114

IP(INE NLIST) PRY

FORMAT(4 THE FOLLOWING SOLUTION IS NOT STABLEw)

Go Yo 110

CONTINUE

NLISTSN[LTIST+4

RSAVE(NLIST)=R

IP(NLISY.EQ,100) NLISTsO

Go TO 100

CONTINUE ' 2

IF{MC,En.1)G0

CALL PRINTA(MSIZE,NSIZE, MsN,MT.NT,IEXT)

PRINT 109 |
FORMAT(//¢ THIS IS THE SOLUTIONW) :
Go TO 1

IP(NUM,EQ,0) GO TO 10

DO 6 Imi,NUM

IP(ABS(ReROLD(I)),LT,.EPS) GQ TO 7

CONTINUE

IP(NUM,GE.25) GO 70 8

NUMBNUMe1

ROLD(NUM)ISR
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4
5

11

NOLD(NiM)m1

DO 18 Ts!,MSIZE
MSOLSINUM,T)=M(I)

bo 13 1.1,nST2E
NSOLS(NIM,T)eN(I)

PRINT ¥, (MY(T),Ixl,MSI2E)
FORMAT(,1%x,3513/1%x,3573,1x,3013)
PRINT 4,R

FORMAT(4M Rz ,F10 5y
IF(NMC,GE.NMAX) GO TO o

Go To 20

NOLD(ISaMOLD(I)*1

GO To 21

CALL SUM(IEXT,NUM,MSIZE,NSY2E,DMO,NNO,MSOLS,NSOLS,ROLD,NOLD,NMC)
Go To0 1 '

END

SUBROUTIN; READIN(MC ,MSIZELNSIZESIEXT Mo N, NMC, NUMSNMAX )
COMMON A¢100,14)

DIMENSTON ME100) ,Nt1a)oMT(100),AT(Lg)02gXT(9)
DATA(IRANSGHRANDOMS

Mce D

READ 2,MSIZE,NSIZE,ZEXT

FORMAT(2T4,9A8)

NHC =0

NYMa D

IPCIRAN,EQ,IEXT(1)) GO TO &

DO 4 Isi,MSIZE

READ 5, (atX,J),J=1,NSI2€)

CONTINUE

FORMAT(16F5%,2)

DO 6 Is1,NSIZE

N{I)=1

DO 7 Iwi,MSIZE

MiI)=t

CALL FRIMTA(MSIZE,NSIZE, MIN,MY,NT,IEXT)
PRINT 41, yEXT
FORMAT(,/1041SOLUTIONS/1X,0487)

RETURN

NMAXBMSTZE

Me=4

GO TO 3

END

SUBROUTINE RANORD(M,MSTI2E,NMC)
COMMON A(¢100,14)

DIMENSTON M(100)

DIMENSTON RANS(400)

DO 10 retl,MSTZE

RANS (T ) gRANIF (1)

CONTINUE

CALL SORT2(RANS,M,MSI2F,1)
NMCENME 1

RETURN

END

SUBROUTINE SUM(IEXT,NUM,MSTEE,NSIZE,DM0.DNO,MSOLS)NSOLS,RILD,

1N°LD:NMC,W

CoOMMON A(100,1¢)
DIMENSTION MX(400)




12
Q2
26
33
54

35
13

2s

14

24

27

30
31
32
23

15

DIMENSTON MSOLS(2x,400)

DIMENSTON NSOLS(25,167

DIMENSYON AVE(100),pEve100) yNORDER (100

DIMENSTON ROLD¢100),NOLD(108)

DIMENSTON TENT(O),MT(100),NY¢14),DMO(NMSIZE) )DNOINSIZE)
DIMENSTON NX(1g)

IsOL=)

IF(NUM,LLT.2) GO TO 26

DO 22 Tx2,NUM

IP(NOLD(I), GY -NOLDC(ISOL)) XS0 =]

MImO

PO 33 Twy,MSIZE

MX(I)mMSOLS(TSOL,I)

DO 34 1e1,NST27

NX(I)aNSOLS(ISOL,I)

CALL PRINTA(MSTIZE,NSIZE,MX,)NX, MY, NT,IgxT)

PRINT s

FORMAT(/s//¢ THIS IS THE MOST COMMON SOLUTION®)

PRINT 13,1EXY

FORMAT (1ML /% SUMMARY*/1X,0A87//7aN)oR*,gXa*TIMES FOUND HOW ORDER®/)

1/,

DO 25 Ixi,MSIZE ‘

IP(DMOCT)Y . EQ.D,) MZeMZul

MLOSMZ « (MSTZE~M2)/3

MU IBMST7E41=(MSIZE~MZ)/3

MGEMZ+1

NMZBQ

DO 14 Ixi.NSIZE

IF(DNOCT),EQ.O,) NMZENMZed

DO 23 1T=1,NUM

DO 24 T41,MSTZE

MX(I)anvgOLS(II,I)

MI(I)sTY

CALL SORT2(MX,MT,MSIZE,wl)

MOKz0 ,

DO 27 T=MA,MLO

MVALSMSOLS(ISOL »MT(I))

IP(MVAL ,LE,MLO) MOKuMOK#1

IP(MVAL ,GE,MHI) MOKmMOKm1

DO 28 TuMMI,MSIZE

MVALSMSOLS(ISOL,MT(T))

IP(MVAL ,LE.,MLO) MOKEmMOKs1

IP(MVAL ,GE,MHY) MOKsMOKel ’
IFriMOK,aT.0) GO TO 3% ]
DO 29 Tal,MSIZE | ,
IF(MSOLS(YT,T),GT . MZ) MSOLSAII,TisMSIZE#MZ+LmMsOLSIIT,I) .
DO 37 rul,NSTZE

Ir(NSOL;!IInI).GT.NMZ) NSOLS(TIIiI)uNST2E*NMZ+1=NSOLS(2X,I)

DO 30 1ga1,MST2E

MX(I)mMSOLS(TII,I)

MY (I)uy .

CALL SORT2(MX,MT,MSTIZE, =1}

PRINT %2,ROLD(II},NOLDCIX)»(MT(Y)aymi,MS12¢)
FORMAT(1X,710,5,19,5X%,8273/%ax,8413/1q%.3418)

CONTINUE

PRINT 15

FORMAT(s//¢ AVERAGED SOLUTIAGN®///¢ ROW AVERAGE DEVIATIONS

W

AZENMC
DO 16 Tei.MSIZE




f AVE(T)u0,
' DO 1¢ Jmi,NUM
AXBSMSOLS(J,I)
AYENOLD(J)
AVE(Y ) mAVE(I)*AX®AY/AZ
1¢ NORDER(T)=T
Dy 17 Yel,MSYTZE
DEVI(I)nD,
Do 18 Jxl,NUM
AXEMSOLS{JaI)
_ AvaNOLD(J}
18 DEV(I)ISNEV(II#AYW(AX@AVE(TI))ww2/AZ
17 DEV(I)=gART(DEVII))
CALL SORT2(AVE,NORDER,MSIZE+=1)
Do 19 1al,MSTZ2E
PRINT 20 NORQER(I)oAVE(I)¢DEV(NORDER(!))
20 FoRMAT(T%,2F10,2)
19 CONTINUE
PRINT 38
381FORMAT¢///0 AVERAGED SOLUTIQONw///¢ COL. AVERAGE DEVIATION®
/)
DO 3¢ Tal,NSIZE
AVE(I)u0,
DO 36 Jal,NUM
AXENSOLSCJ,T)
AVENOLD ¢ J)
AVE(T)mAVEC(TI)*AXYAY/AZ
36 NORDER(I)m?
DO 41 Yal,NSTZE
D[V(I}-O
DO 39 Jéi.NUM
AXENSOLS(J,I)
AYENOLD(J)
30 DEV(I)SDEV(I)*AY*(AXAVE(Z)I#w2/AZ
41 DEV(I)eGART(DEVIIY)
CALL SORT2¢AVE,NORDER,NSTZEY=1)
DD 40 7.1,NSTZE
PRINT 20,NORDER(ZI)-AVELT) DEV(NORDER(Z))
40 CONTINUE
PRINT 714 ,
21 FORMAT({H1) \
END ,

SUBROUTINE PRINTA(MSIZE,NSIEE, MyN,MT,NTHIEXT)
COMMON A(100,1¢)
DIMENSTON Mx(100)
DIMENSTON MIMSTZE) yN(NSTZE) MV (NSIZE) s NTINSIZE)
DIMENSTON TEXT(9)
DO 3 Iu{,MSIZE
MX(T)uM(T)
S MT(I'my
CALL SORT2(MY,MT,MSIZ2E,~1)
DO 5 Isl,NSIZE
MX(I)mN¢Y)
NT(I)mY
CALL SQRT2(MX,NT,NSIZE,=1)
PRINT 10,TEXT,NT
10 FORHATt1H1-9ABIII1H 16X, 16177)
Do 100 7ei,MSTZE
PRINT 200,MT(Z), (AtMT(T),NT(J))idal,NSTTE)

"
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100
200

110

iisg

is
20
12

21

22

a3
a4

34

CONTINUE
FORMAT({Hp,I6,16F7.3)
END

SUBROUTTINE M4D( MyNsMSTZE,NSIZE)R,MTO,NTO,DM,DMO, MT,NT,IERT,MC)

COMMON A(ion,ig)
DIMENSTION MX(100)

DIMENSTON M(MSTZE) )N(NSTZE) ,MTINSIZE)sNTINSIZE)
DIMENSTON MTO(MSIZE),NTO(NSIZE)YDM(MSYIZE) 4pMO(MSIZE)
DIMENSTON TTABLE(16),ITIE¢100), MYISAVE(L00),TIEXT(0)

EPSli.E-S

DO 3 Isg{,MSIZE

MX(I)sM(T)

M¥(I)my

CALL SOBT2(MXsMT,MSIZE,~1)
DO 5 Iel,NSIZE

MX(I)sN(T)

NT(I)ms?

Ca’,L SORT2(MXsNT,NSTIZE, 1)
D0i10 1.1,mMs12E
MYO({I)=KT{I)

DOils Jal,NSTZE
NFO(J)aNT ()

DO 20 Ts1,MSTZE

Disl,

Xymp,

DO 15 Jwi,NSTIZE
Displag (MY (T NTLU))

XNmy
X4euKLeXNOPA(MT(I),NT L))
CONTINUE

DM(I)ua¥1/DY

CONTINUE

DO 512 Twi1,MSIZE
DMC(MT(T))mDMLT)

CALL ORDER(DM,MSIZE,MT,M,MTR)
RgESTea?2,0

KHEMSTZEn1

DY 21 Tui.KK

IYIE(I)u0

Juled

IFCDMO(MT(I)) JEQ,DMO(MY(JIIIITIR(]I) =Y
IF(DMO(MT(2)).EQ,0,) TITIC(2?=0
CONTINUE

ITIE(M3T2E) ™0

NYIED®{

Ia0

Taley

IP(ITIE(I) NE.0IGE TO 23
IP(NTIED.NE,1)GO TO 24
IF(I.GE ,KK)GO TO 28

80 T0 22

NYIEDSNYIED{

GO Y0 22

ITABLE (L) mey
IPI(NTIED.BT.9) PRINT 34
IP(NTIED.GT.9) NTIED®H

FORMAT(eMORE THAN ¢ ROWS OB COLUMNS TIED WNILE DOING ALGORITMM, F
1IRSY ¢ IN TIe WERE REORDERED, OTWERS LeFT TN oLD ORDERe)
Do 2y tiei,mex2e




y a e

27 MYO(ITI)aMTLII)
RBEST'PZ.G
NFACT®]
DO 28 TI=4,NTIED
2a NPACTENFACT#II
DO 29 Trmi,NFACT
CALL PERMUTE(NTIED,ITARLE)
Do 30 ygei,NTIED
30 MTO(TaNTIED@JJ)SMTCI=NTIED+ITABLECJJ))
Do 31 Jg=i,MSIZE
MY (JJ)aMTO(Jd)
31 MeJJrmyy
call SDRTz(MXoM'MSIZEo'i,
call CCstIZEINSIZEI M,N,R)
IF(R.LT,(RREST=EFS)IGO TO 29
RBES T=R
DO 32 Ju=i,MSIZE
32 MYISAVE(JJISMTO YY)
29 CONTINUE
DO 33 JJ®L,MSIZE
MY(JJIsMTSAVE(JJ)
MX(JJIeMTBAVEL JJ!
33 MiJJimy
CALL SORT2(MXsM,MSIZE,=1)
NYIEDm1
IF(I,LY.KK)GO TO 22
25 ReRBEST
IP(R.ED,»2.00CALL CCIMSIZESNSIZBs MaN,R)
IPF(MC,EQ.LIRETIRN
PRINT 10,TEXT,NT
10 FORMAT(LHL,0A8///71H ,2X,1627/)
Do 100 ysi,MSIVE
PRINT ZOO.NT(I)o(AtHTtI)oNT(J))7J-10NSIZEinDM0t"T(!))
100 CONTINUE
200 FORMAT({H0,12,16F7,.3,F8,2)
RETURN
END

SUBROUTINE NAD( M.NoMSIZE,BSIZEsR,MTQ,NTO,DN,DNO,MT,NT, IEXT,MC)
COMMON ;«100,13,
DIMENSTON Mx(i00)
DIMENSTION M(MSTZE) N{NSTIZE),MT(NSIZE)aNTINSIZE)
DIMENSTON ”TO‘“SIZE’oNTU‘”'iZE)TDNCNS!ZE’nnNOQNSIZI)
DIMENSTQN TTABLE(L6),ITIE(L00),NTSAVE(L00),1ENT(O)
EPSnl,pe5
DO 3 Isi,“SIZE
MXCIdmM(D)
3 MY(I)nY
CALL SORT2(MX,MT,MSIZE,=1)
Do 5 I=i,N812E
MX(I)aN(¢I)
$ NT(I)sTY
CALL SORT2(MXsNT)NSIZE,e1)
D0310 14i,MST2E
| 110 MYO(I)aMT(Y)
: . DO41s Jai,NSTZE
: 115 NYO(J)sNT ()
? DO 20 J=i,NSIIE
é Dis0,
Xim0,
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DO 15 Tel,MSIZE
DizDlwa (MY(INANTCY))
xAN®]
XemX1oXNSACMTCI) S NT ()
15 CONTINUE
DN(JI=X1/D4
20 CONTINUE
DO 12 Ta1,NSIZE
12 DNOINT(T)Y)mDN(T)
CALL OQDER(DNpNSIZEoNToNUNTQ)
RBESTuw?2,0
KKBNSIZEw{
Lo 21 Tai KK
ITIE(I)e®
Jal+l
IF(DNO(NT(T)) . EQ,DNOINT(J
IF(DNO(NT(I)).EQ.0.) XTIE
21 CONTINUE 4
ITIE(NSTIZE) =0
NYIED=Y
Is0
22 Isley
IF(ITIE(I).NE.0)GO TO 23
IPINTIED . NE.L)GO YO 24
IP(I,GE, KKIGO TO 25
GO YO 22 )
23 NYIEDSNTIEDeL
GO TO 22
24 IYABLE(1)mmy
IP(NTIED.GT,.9) P:INT 34
IFINT .6T.9) NTRED®9
84 FORMA#EEM%PEQTHAN 9 ROWS OR COLUMNS TIED WWILE DOING ALGORITHM, F
1IRST ¢ IN_TIE WERE RECRDERED, OYWERS LEFT IN oLD ORDER+)
U0 27 TImi,NSIZE
29 NYO(IX)aNTLIY)
RGESTsw2,0
NPACT={
DO 28 TIs4,NTIED
28 NPACTaNFAGT#IX
DO 29 TIsi,NFACY
CALL PERMUTE(NTIED,ITABLE)
Do 30 Jysi,NTIED
30 NTO(TeNTIED*JJ)nNT(InNTIED®ATABLE(JYY)
DO 31 Jusi,NSIZE
MYCJJ)aNTO(JJ)
31 NtJJImJJ ‘
call SORT2(MX,N,NSIZE,el)
Call CetMSIZENNSIZE, M,NsR?
IP(R,LT.(RRESTEPS))IGO YO 29
RBESTmWR :
DO 32 Jumi,NSIZE
32 NYSAVECJJU)SNTOCJJ)
29 CONTINUE
DO 3% Jus4i,NSIZE
NTCJJU I aNTEAVE (L)
MXCJJIRNTSAVE(JJ)

IINITIE(TI )=y
(1)s0

© 33 N(JJUImJY

Call SQRTICHXUN;N’IZEoﬂl)
NTIEDe!
IPCI.L7 X130 70 22
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i0

100
200

60

100

RaRBEST

IF(R.EN.»2.0)CALL CC(MSTIZE,NSIZEs MiN,R)
IF(MC,EQ,1IRETURN

PRINT 10,TEXT,NT

FORMAT(IH1,0a8//7/3H ,2%,1627/)

po 100 yei,MsIZE

PRINT 200,MT(I), (a(MT(T),NT(J)I7Jnl,NSTIZE)
CONTINUE

FORMAT(iMD,I2,16F7,3)

110

PRINT 200,TI,¢0ONOINT(J)),J=3)NSIZE)
RETURN

END

SUBROUTINE ORDER(D,MSIZE,MT/M,MYO)
coMmon at100,14)
IMENSTON MX(100)
DIMENSTION N(MSTZE)»MT(MSIZE) yMIMSIZE) ,MTOIMSIZE)
CALL SORT2(D,MT0O,MSIZE,-1)
DO 60 1e1,MSIZE
MY(I)mMTO(Y)
M(I)=]
CALL SORT2(MTO,M,MSIZE,~1)
END

SUBROUTINE CC(MSIZE,NSIZE, M,N7R)
COMMON A(100,14) N MST2E)D
DIMENSION (MST )
DIMENSTON XLIST(100),y 1Sy (30
Sx=0,

Sy=g,

3’!'00

Ssymp,

SpPXys=p,

Sp=g,

XL M=MSTZE

XLNaNSTYE

XLMsq, /XM

XLNSL, /XN

DO 4 Jwil,NSTZE

XaN(J)

YLISY(J)mXeXLN

DO 2 I=l,MSIZE

XuM(T)

XLIST(I)ymXwXLM

DO 100 ymi,MSIZE

ZaXLIST(I)

Do 100 =i ,NSIZE

TEmYLISTY(J)

PeA(l,J)

Xpupew?

Yp=pPeZ2

SABG X XP

SYsSyayp

SEXRSSX4XPe2

SSYsSSY.ymezZ
SAXY=uSPXYaXpPwl2

SpesSpep , |
SEDXA=gSX~(IX)0e2/8P
SSDY=SSye(SY)0e2/8P

N(NSIZE)
0

- o
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. K

Rrmapaiis - ¥
.

SPDXY=SpXYeSXwSY/SP
RRESQRT(SSNX#SSDY)
I'(RR.FG.D.’ R.oqo
IP(RR,NE.0.) RuSPDXY/RR
ENDSEND¢

121




APPENDIX F

THE MOMENT COMPRESSION COMPUTER PROGRAM
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THE MOMENT COMPRESSION COMPUTER PROGRAM

A. INTRODUCTION

This Appendix describes the computer program MOMCOMP which implements the
gradient algorithm in Chapter III of Part II. The main program logic is shown in the flow chart
in Fig. F-1.
B. DATA RESTRICTIONS

The program can handle an indefinite number of non-negative matrices, each up to
75x75 in size. The data packages for successive matrices are stacked one after another.

C. FORMAT FOR INPUT DATA
The listing of MOMCOMP includes, for illustrative purposes, the data package required
as input for the second example in Chapter III of Part II. This is a 10x10 matrix and three

starting points are requested for the row or column optimizations.

The data input package for each matrix consists of two types of cards. The first card
type contains the three variables N, M, IRAN punched accoiding to format (315).

Here

N = number of matrix rows

=
i

number of matrix columns

number of randomized starts for the optimization in each
direction. (Row and column optimizations therefore consume 2 -

IRAN starts.)

IRAN

The secornd type of data card is used to read in a single row of the input matrix. Successive
rows are punched on distinct cards, with each card employing format (6011).
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If the matrix contains up to 60 columns exactly, N+1 data cards will be required,
namely one of type 1 and N of type 2.

D. SUBROUTINE DESCRIPTION

The portions of MOMCOMP include:
(D) Main Program, which controls execution.
(2) DATA subroutine, which reads input data.

3) PERMGEN subroutine, which generates randomized permutations for ]
use as starting points. '

“4) ZMIN subroutine, which minimizes the sum of either the row or
column moments, using the iterative gradient algorithm described in
Chapter III of Part 1L

(5) LAP subroutine, used by ZMIN, which solves linear assignment
problems.

6) Z function, which computes the ohjective function, taken as

\/ ‘I}I— Z T for optimization of column order

Z = {
Z is the root-mean-square moment arm.

M
Z j for optimization of row order

L
Y M

(7 Subroutines INITCOL and INITROW, which prepare the data needed
by ZMIN for minimizing Z. The required data are the W’s and H’s in the
expression (see Eq. 8-9) in Chapter III of Part II).

Z(n) = [Z W, - }_j Hym; ]

i=1 J—l
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where L = N(M) for optimization of the column (row) order, and where

LT TR denotes a permutation of the L columns (rows).

E. PROGRAM FLOW CHART

Figure F-1 is the computer program flow chart for the Moment Compression
Algorithm.

START

!

READ DATA FOR NEXT PROBLEM
(EXIT IF ALL PROBLEMS DONE)

{

INITCOL INITIALIZES DATA FOR OPTIMIZATION
OF COLUMN ORDER

' _

OPTIMIZE COLUMN ORDER BY USING ZMIN TO
MINIMIZE Z. STARTING ORDER IS GENERATED
BY PERMGEN (THIS BOX IS EXECUTED IRAN TIMES)

INITRGW INITIALIZES DATA FOR OPTIMIZATION
OF ROW ORDER

!

OPTIMIZE ROW ORDER BY USING ZMIN TO MINIMIZE
Z. STARTING ORDER IS GENERATED BY PERMGEN
(THIS BOX 1S EXECUTED IRAN TIMES)

L‘#
11-13-69-12

FIGURE F-1. Flow Chart for Moment Compression Algorithm

F. ERROR MESSAGES

(D The only error message from ZMIN is that convergence has not oc-
curred after 100 iterations (each ifsration is one gradient step and

involves orne linear assignment probiem).
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(2) Five possible ERRCR messages may occur in LAP:
Type 1: Step 1 has been unsuccessful at covering all zeros

Type 2: Same

Type 3: Matrix element for the linear assignment problem is negative
(should never occur)

Type 4: Step 2 fails to find a primed zero in the indicated fow (should
never occur)

Type 5: Same as Type 3 error (should never occur).

G. TIMING
The following times should be multiplied by twice IRAN.

(1) 10x10 problem consumed roughly 3 seconds for optimization of row
. (or column) order for each starting point.

(2) 16x16 problem consumed roughly 10 seconds Jor optimization of row
(or column) order for each starting point.

H. COMPUTER PRINTOUT
The computer printout from MOMCOMP consists of the following:
(1) The input daté

2) The number of the starting point (ranging from 1 through IRAN) and
whether the row or column order is being optimized

3) For each starting point, the sequence of permutations and Zs generated
by successive iterations of the subroutine ZMIN.

There is no attempt to choose among the several solutions obtained by varying the starting
points and no printout of “the” final matrix since this is generally non-unique. The user must
extract, from the printout, the row and column permutations which minimize their respective
Zs.

| The computer output must be interpreted as follows. If the row permutation is printed
as w(), . .. ,m(N), then the optimal rearrangement has, as its vr(i)l‘h row, the ith row of the
input matrix. The user is reminded that the permutations [7(1),...,7(N)] and

[N+1-mw(1), . . . ,N+1-m(N)] are equivalent, each being the other in reversed order.
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MOMENT COMPRESSION ALGORITHM PROGRAM

10 10 3
PROGRAM MOMCOMP
C P,SCHWFTTZEHR X314 )
CéMMON w(iooioH(75075)oD(75775)pCC?S:?Sh:;RAN.N:M
! DIMENSTAN TRERM(100)
! c INITIALTZE RANDOM NUMBER GEMERAVOR
' Xs RANPN(S.1416) ‘
c FINDS TRAN LOCAL MIN FOR RnW AND COLUMN PERMUTATIONS,
1 CONTINUE
CALL TIMF(%9,17HBREGIN NEW MATRIK,)
CaLL DaATa
o READS NATA

CALL TIMF(39,14HDATA IS IN, )
CaLL INTTEOL
CALL TIMF(19,13HINITCOL DONE.)
C COMPUTFS W AND ™ FOR CHLUMN PERMUTATIONS,
DO 20 Tei,IRAN
LaM
CALL PAGESKP
PRINT ®p,Y
AL R L SRPEARGEN DONE.)
CalL TIME (! H M .
g GENERATES PgéMUTATION AF 1wM,STORES IN IPERM,
CALL TIME(3g,41HZMIN STARTS OPTIMIZATION OF COLUMN ORDER)
v MIM PERM)
C ;:&k Erﬁo;LéngMaL COLUMN PBRMUTATION, STARTING FROM IPERM,
CALL TIMF(39,30HZMIN ENDS OMTIMIZATION OF cOLUMN ORDER.)
20 CONTINUE
CALL INMTTROW
CALL TIMF(XS,{3HINITROW DONE.)
c COMPUTES W AND ™ FOR RoW PERMUTATION
DO 39 TuwilsXIRAN .
LsN
CALL PAGESKP
PRINT %0,
50 FORMAT(«PERGMEN CALLED FOR VIME®,IS)
AL R RPERNGEN DONE.)
H .
g:tt ;§n§:33:38HZMIN SYARTS OPTIMIZATION QF Row ORDER,)
CALL ZMINCL,IPERM)
c:Lt Tr:scgs.sonzMIN ENDS ORTIMIZATION OF ROW ORDER,)
30 CONTINUE
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c FINDS pPTIMAL 90w PERMUTATION, STARTING FRNAM IPEHM,
GO TO 1
END

aaagaQa

SUBROUTINE DATA
COMMON wt1n0)smM(75275),D(75575);C(25075) s IRAN, Nl
Call PAGESKP
READ 1OZNOMOIRAN
10 FORMAT(3TS)
PRINT 15.N:M,IRAN
15 FORMAT(WMEW CASE, N,M,IRAN 3 ¢,315)

c DO 1a 1el,N
Cla READ 20 ¢ptI,Jd),Jdzi, M)
20 FORMAT(7F10,5)

DIMENSIAN ID(L00S
DO 25 Tal.M
HEAD 21, (In(J),Jdmed, M)
21 FORMAT (g1
Do 23 Jii,M
23 DeI,J)e INCY)
25 CONTINUE
PRINT 30,(((X,J,D(I,J)),J81sM),221,N) )
30 FORMAT(,¢ORIGINAL MATRIX#//%] U  D(Isv) */(215,#10,3))
PRINT 40
40 FORMAT(w DATA ALL READ IN #)
RETURN
END

SUBROUTINE INITGOL
COMMON (100)sH(78575),D(75775),C(75:75)2IRAN,NoM
DIMENSION §(100)
DO 5 IlioN
S({I)w0
DO 3 Jlio”
StI) ms¢I)s DCI,J)
CONTINUE
DD 15 Js1a.M
WiJ)=0,
DY 10 1ei,N
10 WiJ)® WeJ)aD(I,J)/SCI)
is CUNTINUE
DO 30 Umi,M
DO 1o wwi,y
Xlo.
DO 47 Tai,M
17 XaXeplT,J)eD(Y,K)/S(I)we?
i HiJpK)ux
30 CONTINUE
DO 40 J=myi,M
Do 3s KaJ,M
35 HeJ, %' M(K,J)
40 CONTINUE
c CALL PAGESKP
c PRINT Sg,((JaW(J))aJmy, M)
€50  FORM:T(,*INITCOL DONE. Jd WiJY ¢/(28,E315,8))

W Cw
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Ce0

aoaoaa

(<]

10
s

i
30

35
40

c50
ce0

aao

10

aao

PRINT 0,10 (JaK,HEJ,K)) K8L/M),J=1, M)
FORMATI ywd K HUJsK) «/t235,E16,m))
RETURN

END

SUBROUTINE INITROW
COMMON Wwt100)sH(78,75),D(785775),C75478)sIRAN,Nol
DIMENSTInN $(100)

DO 5 I'in“

S1I)=0,

DO 3 JlipN

S(I) w§¢T)e Dhid,I)

CONTINUE

Do 15 Ji1lN

w(J)=0,

DO 10 Tal,M

WiJde w¢J)eDiJ,IV/SCID

CONTINUE

DO 3n JmwiaN

DO 19 wel,y

xx0,

DO 17 IsisN

XaXeD(J,IT)eD(K,I)4S(T)we?2

MiJaKimY

CONTINUE

Do 40 J'le

DO 35 KgJaN

HiJsK)s HIK,J}

CONYINUE

CALL PAGESKP

PRINT 80,0t JaW(J))sJE1,N)

FORMAT( ,»INITROW DONE, O WeJy wotIs5,e18,8))
PRINT a0, ¢¢(doK,H(J,K)), K8l 7N),Jml,N)
FORMAT( ed K HUJoK) #4(215,£16,8))
RETURN

END

SUBROUTINE PEP¥GEN(IPERM,N)
DIMENSTON IPERM(100),xx¢100)
po 10 vo1,N

IPERM(T)mY

XX(I)RANDN(O)

CALL SORT2tXX,IPERM,N,1)
RETURN

END

FUNCTION 2(M,IPERM)

comnoﬁ w(iOO;.u(75.75>.D¢75)75)7C¢7507S!o!RAN.NR0H.HCOL
DIMENSTON TPERM(100)

2u0,

DO 10 Jml .M

ZoZewl JyepLOATF(IPERM(J) )00

DO 5 KII)M
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B

10QQ

ey
2s

80

40

60
70
100

150
160

aaaQ

a0

ZaZwr( ), a)ywFLOATF(IPERM(i4IPERMIKY)
CONTINI'E .

Zs SQRTF(2/FLOATF L%))

RETURN :

END

SUBROUTINE ZMIN(M,IPERM)

COMMON (100 ,K(75,75),D(25775)iC(75275i2IRAN,NROw,MCOL
DIMENSTONIPERM(100) , TcURPER(LNOY ,NgwPERILI Ny, yed0n)
INEWR 2 (M, TPERM)

PRINT 10, ((I,IPERMII)),Ixd,M)

FORMAT( * ZMIN INTTIALIZED AS FOLLOWS, PERMUTATION®/(2I5))
PRINT 15,ZNEW

FORMAT(4CRJECTIVE FcNm w,E20,.8)

Do 20 741,mM

NEWPER(T)®m IPEAM(Y)

Do 100 (LLwi,300

Calbl TTME(%g,2aHZMIN REGINS ONE ITERATION,)
LL=LLL

DO UP To 400 LNOPS OF ITERATIONS

DO 21 Taxta.M

ICURPER(T)® NEWPER!I)

ZeLD= 7NEW

GENERATE ¢ MATRIX

DO 25 x4 ,M

Yidy= O,

DO 23 Wyl M

Yedda VeJ)w2,wM(J,K)*FLOATF(ICURFER(K))

CONTINUE

DO 30 Uxi™

DO 28 K.1,M

CiJaK)m WiJ #wFLOATF(K)#n2¢ YUJ)OFLOATF{K)

CONTINUE

IL=s LAP¢ M,NEWPER,08))

Ir (IL.g0 .1) RETURN

INEWm 2(M,NEWPER)

PRINT 40pLLoZOLD.ZNEW

FORMAT(« ZMIN TTERATION MUMBER #,I3,¢,0LD aND NEW OBJECTIVE FuNcTI
lonse w,2E20,9)

PRINT 45, ((I,NEWPER(I)),Inirm)

 FORMAT(wNEW PERMUTATION®/(215))

IF(ZNEWLZOLDY 100,640,150

DO 70 Tei,M

IF(NEWPER(T)  NE,ICURPER(I)) GO YO 100
CONTINUE

GO 70 4150

CONTINIIE

PRINT 140,LL

FORMAT(4ITERATIONS END AT LQOP#;IS)
RETURN

END

FUNCTION LAP( N,IPERMOT,0QBJ)

COMMON w(100),H(75,75),Dt75775)3C¢75.75)IRAN,NROW,MCOL

LINEAR ASSIGNMENT PROGLEM SQLVER WITM N X & C, € IS DESYROYED,
RETURN wWITH LAPmp IF SUCCESIFULT 1 IF UNSUCCESSFUL,
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c QUTPUTY 1S OPTIMAL PERMUTATION IN IPERMOT, HMINIMUM OBYECTIVE FCN IN 0BUJ
DIMENSTION JPERMOY 10Uy, 176R0(800y, y2ZERD(500),
LMARK(SNOY, MEOLCOV(100),MRONCOV(LICR), 25T (200,
DIMENSTON U(100),v(100)

c CALL TIME(39,10HLAP BERINSS
SuB=0,
3 ISTEPYm0
. IERRORND
| C SUBw CUMULATIVE AMOUNY SUBTRACTED FROM A HWOw OR COLUMN,
c PAINT 7,0¢(T,J,C0T,U0)),Jx0a0)s IBL,N)
3 cl FORMAT(275,618,7,215,E18,7,215, E18,7,215,F18,7 )
| c SUBTRACT SMALL ELEMENT FROM EACH ROW
;‘ DD 10 II‘..N
f X'C(I“’
| DG 5 JUs2,N
5 Xa AMING (¥,C(1,J))
SubeE Si'gex
| Do 10 dlin”
| 0 CtI.J)m CUT,J)m¥
o] SUBTRAFY SMaLL EST ELEMENYT FROM EaCh COLUNMN
' DO 20 Jai,N
| XeC(1,.))
| DO 15 147,N
| s Xs AMIML (¥,c(1,J))
é SUR=E SIigeX

Do 20 I=1,N
0 CtI,J)3 ctT,U)mX
PRINT 1,00tI,J,C(T,d)),Jdal, N1, 18l,n)
STORE aALL 2EROS IN A ONE=DIMENSIONAL ARRAY, WZERO ZEROS.
KeTH ZFRO TS AT IZERO(K),JZERO(K),
MARK(KYg 1 IF THIS ZERO IS 3TARRED, =el IF IT IS PHIMED, sV OYHERWISE
NZEROmN
DO 30 Tmi,N
Lo 30 gei,n
Ir(ceI, g 25027n30
25 CtI,J)y ",
PRINT 2g,%,J .
26 FORMAT(#ELEMENT®,21I5,«RESEY TO ZERO®)
GO YO ¢ON
2?7 N2EROm NZEROQOe1
IZERO(NZERO)® I
JIERO(MYPFRO)YRY
MARK(NZERO) =D
30 CONTINUE
35 FORMAT( ¢ZERO PRINTOUTw/(2315))
INITIALIZE COVERS
MCOLCOV(ITI)mq IF COLUMN T IS COVEREN,y IF UNCOVERED, SIM. FOR MROWCOV,
INITIALIZE STARS
NSTARm L
NSTARs NUMBRER OF STARRED ENTRIES
DO INITIAL STARRING BY SUERBSSIVELY CWOOSING 2EROS WHICH MAVE THE LEAST
NUMBER OF OTHER ZEROS IN TWE COVERERED PORTION OF EITWER ROW OR COLUMN,
THEN GOVER THAT ROW OR COLUMN,
DO 2000 Imwy,N
MROWCOV(I)ml
2000 MCOLCOV(I)s=0
€100 ICOVEReO
MINLINEw2eN
MINSUMB4eN
e AY END OF PASS, ICOVER=O MEANS ALL ZEROS ARE COVERED, ICOVER POSITIVE

aQaaaoO N

QOO OO
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aQ

MEANS UINFOVERED ZERNS pXIST# AND LwEST IS THE REST UF THEM, HAVING THE
FEWEST(MINLINE) OTHER UNCOVERED ZEROS IM ITS ROW OF cOLUMN,
DO 2200 Ked,NZERO

¢ COMPUTE NUMRER OF UNCOVERED ZEROS IN LINE WITH KeTH,EXCLUDING K ITSELF.
IF(MROWEOVITZERO(KY 0,3y @0 vo 2200
IF(MCOLENV(JZERO(K)) ,EN.,Y) GO TO 2200
c K IS UnpOVERED,
ICOVER=
INKROWRD
INKCOL =0
C INKROW (¢ INKCOL ) =NO, OF UNCOVERED ZEROS INROW(COLUMN) WITH K
IF(TI2EPO(K)Y,ER.IZEROIL)Y) GO TO 212n
IP(JZERO(K) NE,J2ERO(LY) GO TO 2150
c L IS IN SAME COLUMN AS K AND L,ME,x, NOW TESY IFUNCOVERED,
IF(MAQWLENVI(TZERO(L))LWEN.1) GO TO 2150
INKCOLzINKOOL 1
GO TO0 2150
2120 IF(MCOLCOV(JZERO(L))ED,1) GO YO 245u
IF(L,EN.X) GN TO 2150
¢ L IS TN SAME ROW AS K, DISTINCT: AND UNCOVERED,
INKROWRTNKROW e
2150 CONTINUE
INKLINEg MIND(INKROW,INKCOL)
INKSUMRTNKROWS TNKCOL
IF(INKLINE.GT.MINLINE) GO T2 2200
IF(INKLINE,EQ,MINLINE,AND,INKSUM.GE.MINSUF) Gp TO 2200
MINLINFg INKLINE
MINSUMm INKSUM
LBEST= K
IF(MINLINE,EQ. 0, AND MINSUM,LE,1) GO TO 2300
2200 CcoNTINUE
IF(ICOVER.EQ.0) GO YO 2500
c UNCOVERED ZERO AT LBEST IS NOW COVERED,
2300 MROWCOV(IZERO(LBEST))=q
MCOLCOV(JZERO(LBEET))my
MARK (LREST) =
NSTARmNGTARSY '
c PRINT 2450, IZ2EROLLBEST),JZRBRO(LBEST)
C2450 FORMAT(«INTTIALIZATION COVERS ZERO ATe, 215)
G0 1O 21n0
2500 CONTINUE
c SYARRING OF ZERGS DONE,COLUNNS PROPERLY COVERED¢ UNCOVER ROWS
DO 490 Tai,N
40 MROWEOV¢I)mD
c PRINT %8, (¢(K,I2ERO(K),JZEROLK) ,MARK(K)) Ku1,NZERD)
c PRINT a0,NSTAR
C80  FORMAT( ¢PRELIMINARIES DONE: ® I8, ¢STARS )
¢ IP(NSTAR.EQ.N) GO TO 400
c
c
C STEP 1
100 ISTEPLs ISTEPL1+4
c CALL TIMEC39,14HLAP BEGINS STEPY?
IP(ISTEpl.aT.500) GO To 408
ISTEPFL w0
10¢ IrLAGmp

ISTEPFL = ISTEPFLe1
IF(ISTEPFL.GT.2*NZERO) GO TO 604
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c
£125

aoaan

130
c
C135
150

ciss

anvaaoaacaaQ

elo

220
¢

C
ce2l

AT END OF LOOP,AT 10, IFLAG =0 IF NO UNCOVERED ZEROQS EXISY, AND
1 IF PASSYRLY UNCOVERED ZEROS EXIST. EXTHA PASSES THROUGH THIS LOOP
APPEAR TP RE NECESSARY 70 ENSURE NN UNCOVERED 7ERNS EXIST,
DO 1Rp Kk=q,NZERO

KKK

IKm IZERO(K)

JKE JZERO(K)

IFC(MROWNROV(TIKI+MCOLCOV(JK)I),GT;0) GO TO 18"

IFLAGuY

MARK(K)m=1

PRINTY 1926,TK,JK

FORMAT( «STEPL WAS PRIMED AN UNCOVERED ZERO ATw,215)

IF TWERE NA STZRRED 2ER0 IN ROW IK, G0 TO STEP 2, IF THERE IS a QERO
AY L, POVER THTIS ROW AND UNGOVER THWE €OLUMN OF L.

REPEAT TTLL alL Z2EROS rRE nOVERED, THEN GO TO STEP J,

no 130 [ =1,N2EQ0

IF(IZ2EQ0(L) . NE.IK) GO TO 130

IFCLL.ER.%) GO TO 1390

IF(MARK (LY . NELL)Y GO TO 130

GO TO 1gN

CONTINUE

PRINT 438 y

FORMAT(4STEP 1 FOUND NO STARRED ZERC InN THIS ROW,wENT TO STEP 2¢)
GO TO 20N

IslZERN(L)

JRJZERN (L)

PRINT 165,1,d

FORMAT(#STEP 4 FOUND STARRED ZERO IN ROW, AT e, 21I9)
MROWCOV(T)ul

MCOLCOV(JU) w0

IFLAGet

CONTINUE

IFCIFLAG)Y 190,190,195

CONTINIIE

PRINT 191,ISTEPFL

FORMAT: STEP 1 DONE IN*#,15,¢ PaSSES, ON TO STER 3,w)

GO To X0N

CONTINIIE

PRINT 496,ISTEPFL

FORMAT(«STEPY UNDONE AFTER®7IS, ¢ PASSES, RESUME,¥)

G0 TO 101

STEP 2, MY KPim 1eMUNKRES K

LIST(J) CONTAINS THE NUMRER OF 2SUB(Jeg)

Avizio, STEP2 ASSUMES 2SUB(KPL) EXYSTS AND SEARCHES FOR ZSUB(KP1+1)
kKplal

CALL TIMF(39,16HLAP BERINS STEPQ!?

LISTilrm KK

JTYESTs JZERO(LIST(KP1))

DO 220 L=1,NZERO

IF(MARK (LY. NE.1) GO TO 220

IF(JZERO(L)Y.EQ,JTEST) 6O TO 240

CONTINUE

SEQUENCE MAS TERMINATED,

PRINT 224, ((T,LIST(I),TZEROCLISY(I)),JZERO(LISTI(I))),Ing,KPY)
FORMAT(//7¢2ERD SEQUENCE FOR STEP 24/(415))

c STAR PRIMES TN SFQUENEE, UNSTAR STARS YN SEQUENCE
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his

22

229
230

240

242
245
250
€255

26

€70
280

o
D

QOO0 Omaaaaan
(7]
N
[ =]

Q
L]
N
"

350
334
c
C3¢60

- v - )

00 230 nxui, kPl

IF(MARK (LYST¢NK))) 222,239,225

MARK(LTST(NK) )=l

Go TO 230

MARK(LTIST(NK)Y )30

CONTINUIE

EWASE ALL PRIMES, UNCOVER allL ROWS, COVER EVERY COLUMN CONTAINING
A STARRED ZERO,

D024p TwisM

MCOLCOV(T)s0

MROWCOV (I )u0

NSTARRD

DO 250 =y ,NZERO

IF(MARK (x)1242,250,245

MARK (K 2"

GO To 25"

MCOLCOV(JZERN(K) ) =1

NSTAR® NSTAR#1

CONTINUE

PRINT 2655,NSTAR

FORMAT( «STEP 2 WAS TERMINATED WITH ¢,15, #STARSe#)
PRINT 35,((K,TZERO(K),JZEROCK) ,MARKIK)) kmi ,NZFRO)
PRINT %26, ((T,MROWCOV(YT),MEALCOVIIN) Ixl)n)
TF(NSTAR,EO,N) GO TO 400

G0 To 100

KPLaKP4 44

LIST(KPL S|

ITESTs IZERO(L)

A PRIMED 2ERO IN ROW ITEST IS GUARANTEED 70 EXIST,
DO 27p Kmy,NZERO

IF(MARK (K) . NE.=1) GO T0 270

IFCLZERO(KSY EQ,ITEST) &0 To 280

CONTINUFE

GO TO 601

KPim Kpqei

LIST(KPY D K

Go To 210

STEP 3

IF(NSTAR.EQ,N) GO TO 400

CALL TIME(%9,14HLAP BEGINS STEP3)

LESS THAN N INNEPENDENY STARRED ZEROS

COMPUTE X, TME MINIMUM UNCOYERED NUMBER, IT IS STRICTLY POSITIVE.,
ADD X To EACH COVERED ROW, JUBTRACT X FRON EACH UNCOVERED COLUMN.
PRINTY X20,NZERO

FORMAT(#STEP 3 BEGINS WITHes I5; #2EROS, ¢)

PRINT 328, ((T,MROWCOV(T),MCALCOVIZ))iTlud,N)

FORMAT(4COVER PRINTOUT#»/(32%))

Xm 1.0[-:‘100

DO 354 1my,N

IF(MROWCOV(I).EQ, 1) GO TO 351

IF(MCOLCOV(J).EQ,1) GO TO 350

XmAMINY (X,C(I,Jd))

CONTINUE

CONTINUE

PRINT 360.X

FORMAT(,¢STEP ¥ SUBTRACTSe, E20:8)
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370

§910

3920

392
3¢3

394
395

c
C3oé

c.
¢
C
c

IF(X,LF.N,y PRINT 370 ,
FORMAT( 5/wBTEP 3 ERROR, MINIMUM UNGOVERED ELEMENT NON=POSITIVE®)
IF (X,LE.O0,) GO T0 602

Do 380 ta34,N

IF(MROWEOV(T).EQ,0) GO TO 3480

SUB= S(/B=X

DO 375 umi,N

C‘I.J’. C‘I)J’*x

CONTINUE

DO 390 J=i,N

IF(MCcOLCOVLJ)Y.EQ.1) GO TO 390

SUBz SiigsYX

DO 385 Twi,N

CtI.Jd) = m(I,J)eX

CONTINUE : ,
DETETE THE ZEWOS WHICH BECAME POSITIVE, THESE ARE PRECISELY THE
TWICE=NQVEREN 2EROS

Ks(

KaKsd

IF(K,GT NZERO) GO TO 3920
IF((MROWCOV(TZERO(KY ) +MCOLEOV(JZEROIK)) ), NEL2) GO TO 3900
PRINT 39N§,TZERO(K),J2FRO(K)

FORMAT(e STEP ® NELETES ZERQ AT ¥, 215)

NELETE K=Y ZESO0, PUTTING LAST ZERO IN THIS SLoOT.
IF(K,EQ.NZERO) GO TO 3g10

MARK(K)g MARK(NZERO)

MARK(NZERO)=D i

IZERO(“ye IZERND(NZERO)

IZERO(NPERO)I&D

JZERO(Ky= JZEROINZERO)

JZERO(MNPERN) =0

NZEROSMPEROm1

GO0 TO x9Nt

MARK(NZ2ERO) =N

I1ZERO(NYERD) =0

JZERO(N7ZFRO) =D

NZEROs®s NZEROwl

CONTINUE

ADD ANY NEW ZEROS TO LYST. TWESE CaN ONLY BE IN TWE UNCOVERED AREA,
SINCE aLL Z2EROS ON LIST aRE COVERED,

DO 395 Twi.N

IF(MROWEOV(TI) . E0,1) GO TO 395

DO 394 Jmi,N

IF(MCOLCOVIJ)EG., 1) GO TO J9¢

I?(C(I.J)) 392,393,394

C'I.J’.OO

PRINT 26,1,J

NZERO®SN2ERO#1

I2ERO(NZFRO) =]

JZERO(NYERO)S J

MARK(NZERO) =m0

CONTINUE

CONTIMNUE

PRINT 396 ,NZERO

FORMAT( wSTEP 3 DONE, #,I8/ wZEROS IN MATRIX,w)
PRINT 1 0((T,dsClT,d))auni ), Tud,n) |

PRINT X8, ((K,TZERD(K),JZEROCK) ,MARK(K)) K81, NZERO)
PRINT 328, ((T,MROWCOV(T),MCOLCOVIT) ) TudsN)

Go Yo 1017
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aagaon

DONE . N STARS EXIST,
400 0BJm SR
DO 410 w=1,N
410 TPERMOT (ka0
DO 420 Kui,NZERO
IF(MARK(K) ,NE.L3 GO TO 420
IPERMOT(TZERO(K ) )RJZERO(K)
420  CONTINUE

¢ PRINT 430,08
c4380 1‘°R“AT¢~LAP SUCCESSFUL, OBJECTIVE = %,£20,8//¢ OPTIMAL PLACE FoON
c I )
C PRINT 440, ((Y,IPERMOT(T)), I3l ,N) -
C440  roRMAT(278)
¢ PRINT 1,00(2,J,ClTsd)), nd,N),Tnl,N)
LaPs0
RETURN
c
c
c ERROR MESSAGES

600 IERROR= TERROR+1
604 IERRORs TERROR+4
602 IERRORs TERRORe1
603 IERROR® YERRNR 14
604 IERROW® TEFROR®{

PRINT #20,YERRNOR
620  FORMAT(.LAP gRROR OF TYPEe ,I5)

LaPsl

RETURN

END

END
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APPENDIX G

CISCUSSION OF MEASURES OF EFFECTIVENESS
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DISCUSSION OF MEASURES OF EFFECTIVENESS

A. RELATIONSHIP BETWEEN PLEASING PATTERNS AND MEASURES OF
EFFECTIVENESS

The ultimate goal of any data-organizing algorithm is the discovery of an informative
pattern of variable relationships, as evidenced by a pleasing matrix appearance.

Quantitative measures of effectiveness are used as surrogates for pleasing patterns, since
the latter concept is an intuitive one not easily described in words. The two ME:s used in this
report, the summed bond energies and the summed moments of inertia, were chosen with the
hope that they would produce pleasing patterns by creating dense blocks of numbers. No
doubt other MEs can be devised for this purpose; the two proposed here are useful because
they are both (1) amenable to simple algorithms for approximate optimization and (2)
successful at producing informative patterns. Any other useful ME must share these two
properties.

The algorithms used for optimization of these two MEs (the sequentiai selection
algorithm for the bond energy ME, and the gradient algorithm for the moment of inertia ME)
are suboptimal, that is, they do not rigorously optimize their respective MEs. Neither
algorithm should be faulted for producing suboptimal solutions, because the ultimate goal is

- producing informative patterns, not rigorously optimizing the ME; the ME is merely a
surrogate for measuring the pleasingness of a pattern. Indeed, the satisfaction with the two
algorithms is based upon their producing data orderings which are informative.

It often happens that several appealing data arrangements exist, all with approximately
the same ME (namely, near the optimum), and all very similar.

# Consequently, ties or near-ties among the ME can oniy be broken by a subjective
: eyeball judgment as to which data arrangement is most pleasing. Until the eyeball judgment is
‘ made, the tying and near-tying configurations must be considererd equally aceptable. For
8 example, the five solutions in Table 2, or the four solution matrices in Figure 30, and the two
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solutions in Figure 28 must be considered equally acceptable. It is highly arbitrary to choose
one over the others on the basis of the numerical value of the M£E.

In short, the ME is useful only for the first-order task of locating a handful of good
arrangements. The ME is not useful, except in an arbitrary way, for the second-order task of
choosing among the good (and nearly equally pleasing) arrangements.

B. GENERALIZATION OF THE BOND ENERGY ME

The bond energy ME can be generalized to include bonds between matrix elements
which are not nearest neighbors. For example, a ME which weights the bonds according to the
inverse square of the distance between the matrix elements (so-called gravity model) would be

Qs
ME =2 L — ;T -
§ o1s £ g G-D%+G-s5)2

It may be conjectured that such generalized MEs, when optimized over all row and
column permutations, are more successful at producing tightly clumped matrix elements than
the ME used for the Bond Energy Algorithm, which involved only nearest neighbor bonds.
There are two objections to the generalized ME, however. One is the significantly greater
computational difficulty in optimizing the ME over all row and column permutations. Once
the nearest neighbor feature is abandoned, the sequential selection procedure described in
Appendix D cannot be used.! Even more serious is the fact that when diagonal bonds are
included in the ME, it is no longer possible to optimize the ME in two passes, one which
optimizes the row order, the other optimizing the column order. Instead, one would probably
have to iterate, as in the moment ordering algorithm, between row rearrangements and column
rearrangements.

The second objection to a generalized ME which includes diagonal bends is that, for
sparse matrices, optimization of the ME may result in numerous bonds being attached to the
large matrix elements, thereby actually destroying the pleasing pattern. An example of this
phenomenon is given by the case

- - .
I 1 0] 11 o 1
d=|1 1 o al=10 500 0
0 0 500 1 0 1
- e L o

Note that row and column permutations can transform d! into d. Since d is in block form, it
conveys more information about the group structure and is preferable to dl. However, if any

1. This procedure can be modified, however, if the generalized ME includes only row-bonds and column-bonds (albeit
not necessarily nearest neighbor), and lacks diagonal bonds.
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of the three following MEs (which allow next-to-nearest neighbor diagonal bonds) are used,
then dl is preferable to d. Evidently optimization of the bond energies leads tc the attachment
of as many (diagonal) bonds to the “500” as possible, even at the expense of block form. By
contrast, when the diagonal bonds are excluded, optimization of the ME will produce block

form if this is possible. (See Appendix B.)

The three MEs are

ME, (b) = Z 55 a;
3

ME2 (b) = Z aij aij
1|

ME3 (b) =Z au ﬁl_]
L)

where 613 = bl] >0
0 bij =0

a =3 j+1 t -1 3+1,5 Y-1,]
12084 41 *as,5-1 TR0 Y ai-l,j~1]'
By = 8 5+1 *Oi,5-1 % 8415t 0.1,

+ 1/2.[5i+1,j+1 +841,5-1 7 %.1,5+1 7 Bi-l,j-l]

If any of the three are used, then d! hasa higher ME than d:

ME, (d) = 510 ME; (d!) =1002
ME, (d) = 510 ME, (a!) =2000
MEj; (d) = 260.5 ME; (al) = 1002

C. ADDITIONAL PROPERTIES OF THE MEs

(1) All three algorithms are unaffected if all the matrix elements are

multiplied by a positive constant.
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(2)

(3)

All three algorithms are affected if a constant is added to the matrix
element. In particular this implies sensitivity to the choice of origin of
the ordinal scale (e.g., 0,1,2 versus 1,2,3) when rankings are used as the
matrix elements.

The sensitivity of the Bond Energy Algorithm to the choice of k
depends on the relative magnitudes of the various matrix elements. If
all the matrix elements are 0 or 1, then the ME is independent of the
choice of k. If, however, the matrix elements vary greatly in magnitude,
it is recommended that k be set equal to 2 instead of 1. This choice
preserves scale by not overemphasizing the largest elements. For
example, with k = 2, the bond strength between elements of sizes 5 and
7 will be the\/_?a—S, close to their average, rather than the inflated value
35 whenk =1.
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APPENDIX H

A MEASURE OF EFFECTIVENESS
FOR THE MOMENT ORDERING ALGORITHM
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4

A MEASURE OF EFFECTIVENESS
FOR THE MOMENT ORDERING ALGORITHM.

It has been pointed out that one of the properties of the algorithm is to drive the array
being operated upon toward a more diagonal form. This property has been utilized to define!
a correlation coefficient, R, to measure the progress of the itsrative procedure and the quality
of the final result. The coefficient has been defined as follows:

R = Sxy ,
sty
2 1 % ) 2
where S T e as: --5(-) ,
X T-1 ;=4 j‘gl v (X1

7,]
>
<
]
bl
M=
I [ij
=
N
5
P
S
A~
<
|
S—"

i=1 j

x =L ¥ ¥
X = = a;: X

T = =1 "
Y = = a: Y

T <1 =1 7

M N
T = 3 2 3

i=1 j=1
X, = i/M }
Yj = ]/N
y = element in ith column and j“h TOw.

1. Suggestion due to Dr. Phillip Gouid of IDA.
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Note that R is normalized so that its value always lies between zero and one. For the special
case of a square matrix R=1 ccrresponds to only the main diagonal being filled, R=0 to a
random distribution of value throughout the array, and R= -1 to the opposite diagonal only
being filled. Initial values of R for arrays therefore are generally near zero, and as the algorithm
proceeds toward a solution, R generally increases. The final value of R is a measure of the
degree of diagonality obtained by the algorithm. It should be noted however, that the
algorithm is no¢ a direct attempt to maximize R, and that there are occasional cases in which
an iteration of the algorithm will decrease R instead of increasing it.
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APPENDIX f{

MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM
FOR A SAMPLE 3 x 3 ARRAY

149




MULTIPLE SOLUTIONS TO THE MOMENT ORDERING ALGORITHM
FOR A SAMPLE 3 x 3 ARRAY.

In order to investigate the factors which lead to multiple solutions to the Moment
Ordering Algorithm, the following experiment was carried out. It deals with a 3 x 3 array, but
it is believed that the conclusions drawn may be useful in understanding the phenomenon for
the vastly more complicated cases of larger arrays.

1. A sample 3 x 3 array (Fig. I-1) was constructed. For simplicit, , its rows were
each nomalized to 10. Two of the rows were fixed (7,2,1 and 3,5,2), while the
elements in the third were allowed to take on various values (always subject to
the normalization and the restriction that all elements be non-negative).

@ B v
Al7 2 1
B|3 5 2
C| X Y Z

11-13-69-4

FIGURE |-1. Experimental 3x3 Array

2. For every possible combination of values for the elements of the third row, the
resulting array was analyzed. In particular, the number of possible stable
solutions was determined.

3. The results are presented in Fig. I-2. Every point inside the triangle represents a
possible third row of the array. The values of the three elements are read
upwards from each face. (Note that the sum of the distance from any point
inside to all three faces of the equilateral triangle is constant—in this case equal
to 10.) The sets of elements corresponding to the first two rows are marked s
A and B, and for each other point the multiplicity of solutions to the resulting
array is shown.

4. The resulting overall pattern indicates that when the third point is colinear, or
nearly so, with points A and B (that is, when the three rows are in a
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well-defined order within the coordinate system of Fig. I-2) only one solution
usually exists. However, in the region in the lower left hand section of the
triangle, where the third point forms a triangle with A and B, rather than a 1
straight line, thiee stable solutions exist. This indicates that, when one specific |
linear ordering exists, the algorithm will find that ordering, but that when
several orderings are equally satisfactory, it may find each.
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FIGURE I-2. Multiplicity of Solutions for a Small Array
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